All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.awt.Graphics2D Maven / Gradle / Ivy

There is a newer version: 1.3.1
Show newest version
/*

NOTICE


(c) 2005-2007 Sun Microsystems, Inc. All Rights Reserved.

Neither this file nor any files generated from it describe a complete specification, and they may only be used as described below. For example, no permission is given for you to incorporate this file, in whole or in part, in an implementation of a Java specification.

Sun Microsystems Inc. owns the copyright in this file and it is provided to you for informative, as opposed to normative, use. The file and any files generated from it may be used to generate other informative documentation, such as a unified set of documents of API signatures for a platform that includes technologies expressed as Java APIs. The file may also be used to produce "compilation stubs," which allow applications to be compiled and validated for such platforms.

Any work generated from this file, such as unified javadocs or compiled stub files, must be accompanied by this notice in its entirety.

This work corresponds to the API signatures of JSR 217: Personal Basis Profile 1.1. In the event of a discrepency between this work and the JSR 217 specification, which is available at http://www.jcp.org/en/jsr/detail?id=217, the latter takes precedence. */ package java.awt; // import java.awt.RenderingHints.Key; // import java.awt.geom.AffineTransform; import java.awt.image.ImageObserver; // import java.awt.image.BufferedImageOp; // import java.awt.image.BufferedImage; // import java.awt.image.RenderedImage; // import java.awt.image.renderable.RenderableImage; // import java.awt.font.GlyphVector; // import java.awt.font.FontRenderContext; // import java.awt.font.TextAttribute; import java.text.AttributedCharacterIterator; import java.util.Map; // PBP/PP /** * This Graphics2D class extends the * {@link Graphics} class to provide more sophisticated * control over * graphics operations. * *

*

Coordinate Spaces

* All coordinates passed to a Graphics2D object are specified * in a device-independent coordinate system called User Space, which is * used by applications. The Graphics2D object * * behaves as if it contains * a transform * object as part of its internal rendering state * that defines how to convert coordinates from user space to * device-dependent coordinates in Device Space. * *

* Some of the operations performed by the rendering attribute objects * occur in the device space, but all Graphics2D methods take * user space coordinates. *

* Every Graphics2D object is associated with a target that * defines where rendering takes place. A * {@link GraphicsConfiguration} object defines the characteristics * of the rendering target, such as pixel format and resolution. * The same rendering target is used throughout the life of a * Graphics2D object. *

* When creating a Graphics2D object, the * GraphicsConfiguration * specifies the * * * transform for * the target of the Graphics2D (a * {@link Component} or {@link Image}). This * * * transform maps the * user space coordinate system to screen and printer device coordinates * such that the origin maps to the upper left hand corner of the * target region of the device with increasing X coordinates extending * to the right and increasing Y coordinates extending downward. * The scaling of the * * * transform is set to identity for those devices * that are close to 72 dpi, such as screen devices. * The scaling of the * * * transform is set to approximately 72 user * space coordinates per square inch for high resolution devices, such as * printers. For image buffers, the * * * transform is the * * * identity * transform. * *

Rendering Process

* The Rendering Process can be broken down into four phases that are * controlled by the Graphics2D rendering attributes. * The renderer can optimize many of these steps, either by caching the * results for future calls, by collapsing multiple virtual steps into * a single operation, or by recognizing various attributes as common * simple cases that can be eliminated by modifying other parts of the * operation. *

* The steps in the rendering process are: *

    *
  1. * Determine what to render. *
  2. * Constrain the rendering operation to the current Clip. * The Clip is specified by a {@link Shape} in user * space and is controlled by the program using the various clip * manipulation methods of Graphics * . * * This user clip * is transformed into device space by the * * target transform * * and combined with the * device clip, which is defined by the visibility of windows and * device extents. The combination of the user clip and device clip * defines the composite clip, which determines the final clipping * region. The user clip is not modified by the rendering * system to reflect the resulting composite clip. *
  3. * Determine what colors to render. *
  4. * Apply the colors to the destination drawing surface using the current * {@link Composite} attribute in the Graphics2D context. *
*
* The three types of rendering operations, along with details of each * of their particular rendering processes are: *
    *
  1. * Shape operations *
      *
    1. * If the operation is a draw operation, then * * the current {@link Stroke} attribute in the * Graphics2D context is used to construct a new * Shape object that contains the outline of the specified * Shape. *
    2. * The Shape is transformed from user space to device space * using the * * target transform * in the Graphics2D context. * *
    3. * The current * * {@link Color} * in the Graphics2D context * is * * used to determine * the colors to render in device space. *
    *
  2. * Text operations *
      *
    1. * The following steps are used to determine the set of glyphs required * to render the indicated String: *
        *
      1. * If the argument is a String, then the current * Font in the Graphics2D context is asked to * convert the Unicode characters in the String into a set of * glyphs for presentation with whatever basic layout and shaping * algorithms the font implements. *
      2. * If the argument is an * {@link AttributedCharacterIterator}, * * its embedded font attributes * * are used to implement * more sophisticated glyph layout algorithms * * . * *
      *
    2. * The current Font is queried to obtain outlines for the * indicated glyphs. These outlines are treated as shapes in user space * relative to the position of each glyph that was determined in step 1. *
    3. * The character outlines are filled as indicated above * under Shape operations. *
    4. * The current * * {@link Color} * is * * used to determine * the colors to render in device space. *
    *
  3. * Image Operations *
      *
    1. * The region of interest is defined by the bounding box of the source * Image. * This bounding box is specified in Image Space, which is the * Image object's local coordinate system. *
    2. * * In this Profile, * the bounding box is always treated as if it is already in user space. *
    3. * The bounding box of the source Image is transformed from user * space into device space using the * target transform . * * Note that the result of transforming the bounding box does not * necessarily result in a rectangular region in device space. *
    4. * The Image object determines what colors to render, * sampled according to the source to destination * coordinate mapping specified by the * target transform . * *
    *
* *

Default Rendering Attributes

* The default values for the Graphics2D rendering attributes are: *
* *
Color * *
The color of the Component. * *
Font *
The Font of the Component. * *
Stroke *
A square pen with a linewidth of 1, no dashing, miter segment joins * and square end caps * (unless restricted - see restrictions in {@link BasicStroke}) * * . * * * *
Composite *
The {@link AlphaComposite#SRC_OVER} rule. * *
Clip *
No rendering Clip, the output is clipped to the * Component. * *
* * * *

* *

Restrictions

* * * * * @version 1.78, 01/23/03 * @author Jim Graham */ public abstract class Graphics2D extends Graphics { /** * Constructs a new Graphics2D object. Since * Graphics2D is an abstract class, and since it must be * customized by subclasses for different output devices, * Graphics2D objects cannot be created directly. * Instead, Graphics2D objects must be obtained from another * Graphics2D object, created by a * Component, or obtained from images such as * {@link BufferedImage} objects. * @see java.awt.Component#getGraphics * @see java.awt.Graphics#create */ protected Graphics2D() { } // /** // * Draws a 3-D highlighted outline of the specified rectangle. // * The edges of the rectangle are highlighted so that they // * appear to be beveled and lit from the upper left corner. // *

// * The colors used for the highlighting effect are determined // * based on the current color. // * The resulting rectangle covers an area that is // * width + 1 pixels wide // * by height + 1 pixels tall. This method // * uses the current Color exclusively and ignores // * the current Paint. // * @param x the x coordinate of the rectangle to be drawn. // * @param y the y coordinate of the rectangle to be drawn. // * @param width the width of the rectangle to be drawn. // * @param height the height of the rectangle to be drawn. // * @param raised a boolean that determines whether the rectangle // * appears to be raised above the surface // * or sunk into the surface. // * @see java.awt.Graphics#fill3DRect // */ // public void draw3DRect(int x, int y, int width, int height, boolean raised) // { } // // /** // * Paints a 3-D highlighted rectangle filled with the current color. // * The edges of the rectangle are highlighted so that it appears // * as if the edges were beveled and lit from the upper left corner. // * The colors used for the highlighting effect and for filling are // * determined from the current Color. This method uses // * the current Color exclusively and ignores the current // * Paint. // * @param x the x coordinate of the rectangle to be filled. // * @param y the y coordinate of the rectangle to be filled. // * @param width the width of the rectangle to be filled. // * @param height the height of the rectangle to be filled. // * @param raised a boolean value that determines whether the // * rectangle appears to be raised above the surface // * or etched into the surface. // * @see java.awt.Graphics#draw3DRect // */ // public void fill3DRect(int x, int y, int width, int height, boolean raised) // { } // // /** // * Strokes the outline of a Shape using the settings of the // * current Graphics2D context. The rendering attributes // * applied include the Clip, Transform, // * Paint, Composite and // * Stroke attributes. // * @param s the Shape to be rendered // * @see #setStroke // * @see #setPaint // * @see java.awt.Graphics#setColor // * @see #transform // * @see #setTransform // * @see #clip // * @see #setClip // * @see #setComposite // */ // public abstract void draw(Shape s); // // /** // * Renders an image, applying a transform from image space into user space // * before drawing. // * The transformation from user space into device space is done with // * the current Transform in the Graphics2D. // * The specified transformation is applied to the image before the // * transform attribute in the Graphics2D context is applied. // * The rendering attributes applied include the Clip, // * Transform, and Composite attributes. // * Note that no rendering is done if the specified transform is // * noninvertible. // * @param img the Image to be rendered // * @param xform the transformation from image space into user space // * @param obs the {@link ImageObserver} // * to be notified as more of the Image // * is converted // * @return true if the Image is // * fully loaded and completely rendered; // * false if the Image is still being loaded. // * @see #transform // * @see #setTransform // * @see #setComposite // * @see #clip // * @see #setClip // */ // public abstract boolean drawImage(Image img, AffineTransform xform, // ImageObserver obs); // // /** // * Renders a BufferedImage that is // * filtered with a // * {@link BufferedImageOp}. // * The rendering attributes applied include the Clip, // * Transform // * and Composite attributes. This is equivalent to: // *

     // * img1 = op.filter(img, null);
     // * drawImage(img1, new AffineTransform(1f,0f,0f,1f,x,y), null);
     // * 
// * @param op the filter to be applied to the image before rendering // * @param img the BufferedImage to be rendered // * @param x the x coordinate of the location in user space where // * the upper left corner of the image is rendered // * @param y the y coordinate of the location in user space where // * the upper left corner of the image is rendered // * // * @see #transform // * @see #setTransform // * @see #setComposite // * @see #clip // * @see #setClip // */ // public abstract void drawImage(BufferedImage img, // java.awt.image.BufferedImageOp op, int x, int y); // // /** // * Renders a {@link RenderedImage}, // * applying a transform from image // * space into user space before drawing. // * The transformation from user space into device space is done with // * the current Transform in the Graphics2D. // * The specified transformation is applied to the image before the // * transform attribute in the Graphics2D context is applied. // * The rendering attributes applied include the Clip, // * Transform, and Composite attributes. Note // * that no rendering is done if the specified transform is // * noninvertible. // * @param img the image to be rendered // * @param xform the transformation from image space into user space // * @see #transform // * @see #setTransform // * @see #setComposite // * @see #clip // * @see #setClip // */ // public abstract void drawRenderedImage(RenderedImage img, AffineTransform // xform); // // /** // * Renders a // * {@link RenderableImage}, // * applying a transform from image space into user space before drawing. // * The transformation from user space into device space is done with // * the current Transform in the Graphics2D. // * The specified transformation is applied to the image before the // * transform attribute in the Graphics2D context is applied. // * The rendering attributes applied include the Clip, // * Transform, and Composite attributes. Note // * that no rendering is done if the specified transform is // * noninvertible. // *

// * Rendering hints set on the Graphics2D object might // * be used in rendering the RenderableImage. // * If explicit control is required over specific hints recognized by a // * specific RenderableImage, or if knowledge of which hints // * are used is required, then a RenderedImage should be // * obtained directly from the RenderableImage // * and rendered using // *{@link #drawRenderedImage(RenderedImage, AffineTransform) drawRenderedImage}. // * @param img the image to be rendered // * @param xform the transformation from image space into user space // * @see #transform // * @see #setTransform // * @see #setComposite // * @see #clip // * @see #setClip // * @see #drawRenderedImage // */ // public abstract void drawRenderableImage(RenderableImage img, // AffineTransform xform); // PBP/PP // [6263110] /** * * * * Draws the text given by the specified string, using this * graphics context's current font and color. The baseline of the * leftmost character is at position (xy) in this * graphics context's coordinate system. * * * @param str the string to be rendered * @param x the x coordinate of the location where the * String should be rendered * @param y the y coordinate of the location where the * String should be rendered * @throws NullPointerException if str is * null * @see java.awt.Graphics#drawBytes * @see java.awt.Graphics#drawChars * @since JDK1.0 */ public abstract void drawString(String str, int x, int y); // /** // * Renders the text specified by the specified String, // * using the current text attribute state in the Graphics2D context. // * The baseline of the first character is at position // * (xy) in the User Space. // * The rendering attributes applied include the Clip, // * Transform, Paint, Font and // * Composite attributes. For characters in script systems // * such as Hebrew and Arabic, the glyphs can be rendered from right to // * left, in which case the coordinate supplied is the location of the // * leftmost character on the baseline. // * @param s the String to be rendered // * @param x the x coordinate of the location where the // * String should be rendered // * @param y the y coordinate of the location where the // * String should be rendered // * @throws NullPointerException if str is // * null // * @see #setPaint // * @see java.awt.Graphics#setColor // * @see java.awt.Graphics#setFont // * @see #setTransform // * @see #setComposite // * @see #setClip // */ // public abstract void drawString(String s, float x, float y); // /** // * Renders the text of the specified iterator, using the // * Graphics2D context's current Paint. The // * iterator has to specify a font // * for each character. The baseline of the // * first character is at position (xy) in the // * User Space. // * The rendering attributes applied include the Clip, // * Transform, Paint, and // * Composite attributes. // * For characters in script systems such as Hebrew and Arabic, // * the glyphs can be rendered from right to left, in which case the // * coordinate supplied is the location of the leftmost character // * on the baseline. // * @param iterator the iterator whose text is to be rendered // * @param x the x coordinate where the iterator's text is to be // * rendered // * @param y the y coordinate where the iterator's text is to be // * rendered // * @see #setPaint // * @see java.awt.Graphics#setColor // * @see #setTransform // * @see #setComposite // * @see #setClip // */ // public abstract void drawString(AttributedCharacterIterator iterator, int x, // int y); // // /** // * Renders the text of the specified iterator, using the // * Graphics2D context's current Paint. The // * iterator must specify a font // * for each character. The baseline of the // * first character is at position (xy) in the // * User Space. // * The rendering attributes applied include the Clip, // * Transform, Paint, and // * Composite attributes. // * For characters in script systems such as Hebrew and Arabic, // * the glyphs can be rendered from right to left, in which case the // * coordinate supplied is the location of the leftmost character // * on the baseline. // * @param iterator the iterator whose text is to be rendered // * @param x the x coordinate where the iterator's text is to be // * rendered // * @param y the y coordinate where the iterator's text is to be // * rendered // * @see #setPaint // * @see java.awt.Graphics#setColor // * @see #setTransform // * @see #setComposite // * @see #setClip // */ // public abstract void drawString(AttributedCharacterIterator iterator, float // x, float y); // // /** // * Renders the text of the specified // * {@link GlyphVector} using // * the Graphics2D context's rendering attributes. // * The rendering attributes applied include the Clip, // * Transform, Paint, and // * Composite attributes. The GlyphVector // * specifies individual glyphs from a {@link Font}. // * The GlyphVector can also contain the glyph positions. // * This is the fastest way to render a set of characters to the // * screen. // * @param g the GlyphVector to be rendered // * @param x the x position in User Space where the glyphs should // * be rendered // * @param y the y position in User Space where the glyphs should // * be rendered // * // * @see java.awt.Font#createGlyphVector // * @see java.awt.font.GlyphVector // * @see #setPaint // * @see java.awt.Graphics#setColor // * @see #setTransform // * @see #setComposite // * @see #setClip // */ // public abstract void drawGlyphVector(GlyphVector g, float x, float y); // // /** // * Fills the interior of a Shape using the settings of the // * Graphics2D context. The rendering attributes applied // * include the Clip, Transform, // * Paint, and Composite. // * @param s the Shape to be filled // * @see #setPaint // * @see java.awt.Graphics#setColor // * @see #transform // * @see #setTransform // * @see #setComposite // * @see #clip // * @see #setClip // */ // public abstract void fill(Shape s); // // /** // * Checks whether or not the specified Shape intersects // * the specified {@link Rectangle}, which is in device // * space. If onStroke is false, this method checks // * whether or not the interior of the specified Shape // * intersects the specified Rectangle. If // * onStroke is true, this method checks // * whether or not the Stroke of the specified // * Shape outline intersects the specified // * Rectangle. // * The rendering attributes taken into account include the // * Clip, Transform, and Stroke // * attributes. // * @param rect the area in device space to check for a hit // * @param s the Shape to check for a hit // * @param onStroke flag used to choose between testing the // * stroked or the filled shape. If the flag is true, the // * Stroke oultine is tested. If the flag is // * false, the filled Shape is tested. // * @return true if there is a hit; false // * otherwise. // * @see #setStroke // * @see #fill // * @see #draw // * @see #transform // * @see #setTransform // * @see #clip // * @see #setClip // */ // public abstract boolean hit(Rectangle rect, Shape s, boolean onStroke); // /** * Returns the device configuration associated with this * Graphics2D. * @return the device configuration of this Graphics2D. */ public abstract GraphicsConfiguration getDeviceConfiguration(); // PBP/PP /** * Sets the Composite for the Graphics2D context. * The Composite is used in all drawing methods such as * drawImage, drawString, draw, * and fill. It specifies how new pixels are to be combined * with the existing pixels on the graphics device during the rendering * process. * *

* Note: This operation is subject to * restriction * in this Profile. If the Composite is a * custom object rather than an * instance of the AlphaComposite class then * IllegalArgumentException is thrown. * * * @param comp the Composite object to be used for rendering * * @throws IllegalArgumentException If comp is not * an instance of AlphaComposite. * * * * * * * @see #getComposite * @see AlphaComposite * * * */ public abstract void setComposite(Composite comp); // /** // * Sets the Paint attribute for the // * Graphics2D context. Calling this method // * with a null Paint object does // * not have any effect on the current Paint attribute // * of this Graphics2D. // * @param paint the Paint object to be used to generate // * color during the rendering process, or null // * @see java.awt.Graphics#setColor // * @see #getPaint // * @see GradientPaint // * @see TexturePaint // */ // public abstract void setPaint(Paint paint); // /** * Sets the Stroke for the Graphics2D context. * @param s the Stroke object to be used to stroke a * Shape during the rendering process * *

* Note: This operation is subject to * restriction * in this Profile. If the Stroke is a * custom object rather than an * instance of the BasicStroke class then * IllegalArgumentException is thrown. * @see BasicStroke * @see #getStroke */ public abstract void setStroke(Stroke s); // // /** // * Sets the value of a single preference for the rendering algorithms. // * Hint categories include controls for rendering quality and overall // * time/quality trade-off in the rendering process. Refer to the // * RenderingHints class for definitions of some common // * keys and values. // * @param hintKey the key of the hint to be set. // * @param hintValue the value indicating preferences for the specified // * hint category. // * @see #getRenderingHint(RenderingHints.Key) // * @see RenderingHints // */ // public abstract void setRenderingHint(java.awt.RenderingHints.Key hintKey, // Object hintValue); // // /** // * Returns the value of a single preference for the rendering algorithms. // * Hint categories include controls for rendering quality and overall // * time/quality trade-off in the rendering process. Refer to the // * RenderingHints class for definitions of some common // * keys and values. // * @param hintKey the key corresponding to the hint to get. // * @return an object representing the value for the specified hint key. // * Some of the keys and their associated values are defined in the // * RenderingHints class. // * @see RenderingHints // * @see #setRenderingHint(RenderingHints.Key, Object) // */ // public abstract Object getRenderingHint(java.awt.RenderingHints.Key // hintKey); // // /** // * Replaces the values of all preferences for the rendering // * algorithms with the specified hints. // * The existing values for all rendering hints are discarded and // * the new set of known hints and values are initialized from the // * specified {@link Map} object. // * Hint categories include controls for rendering quality and // * overall time/quality trade-off in the rendering process. // * Refer to the RenderingHints class for definitions of // * some common keys and values. // * @param hints the rendering hints to be set // * @see #getRenderingHints // * @see RenderingHints // */ // public abstract void setRenderingHints(Map hints); // // /** // * Sets the values of an arbitrary number of preferences for the // * rendering algorithms. // * Only values for the rendering hints that are present in the // * specified Map object are modified. // * All other preferences not present in the specified // * object are left unmodified. // * Hint categories include controls for rendering quality and // * overall time/quality trade-off in the rendering process. // * Refer to the RenderingHints class for definitions of // * some common keys and values. // * @param hints the rendering hints to be set // * @see RenderingHints // */ // public abstract void addRenderingHints(Map hints); // // /** // * Gets the preferences for the rendering algorithms. Hint categories // * include controls for rendering quality and overall time/quality // * trade-off in the rendering process. // * Returns all of the hint key/value pairs that were ever specified in // * one operation. Refer to the // * RenderingHints class for definitions of some common // * keys and values. // * @return a reference to an instance of RenderingHints // * that contains the current preferences. // * @see RenderingHints // * @see #setRenderingHints(Map) // */ // public abstract RenderingHints getRenderingHints(); // // /** // * Translates the origin of the Graphics2D context to the // * point (xy) in the current coordinate system. // * Modifies the Graphics2D context so that its new origin // * corresponds to the point (xy) in the // * Graphics2D context's former coordinate system. All // * coordinates used in subsequent rendering operations on this graphics // * context are relative to this new origin. // * @param x the specified x coordinate // * @param y the specified y coordinate // * @since JDK1.0 // */ // public abstract void translate(int x, int y); // // /** // * Concatenates the current // * Graphics2D Transform // * with a translation transform. // * Subsequent rendering is translated by the specified // * distance relative to the previous position. // * This is equivalent to calling transform(T), where T is an // * AffineTransform represented by the following matrix: // *

     // *		[   1    0    tx  ]
     // *		[   0    1    ty  ]
     // *		[   0    0    1   ]
     // * 
// * @param tx the distance to translate along the x-axis // * @param ty the distance to translate along the y-axis // */ // public abstract void translate(double tx, double ty); // // /** // * Concatenates the current Graphics2D // * Transform with a rotation transform. // * Subsequent rendering is rotated by the specified radians relative // * to the previous origin. // * This is equivalent to calling transform(R), where R is an // * AffineTransform represented by the following matrix: // *
     // *		[   cos(theta)    -sin(theta)    0   ]
     // *		[   sin(theta)     cos(theta)    0   ]
     // *		[       0              0         1   ]
     // * 
// * Rotating with a positive angle theta rotates points on the positive // * x axis toward the positive y axis. // * @param theta the angle of rotation in radians // */ // public abstract void rotate(double theta); // // /** // * Concatenates the current Graphics2D // * Transform with a translated rotation // * transform. Subsequent rendering is transformed by a transform // * which is constructed by translating to the specified location, // * rotating by the specified radians, and translating back by the same // * amount as the original translation. This is equivalent to the // * following sequence of calls: // *
     // *		translate(x, y);
     // *		rotate(theta);
     // *		translate(-x, -y);
     // * 
// * Rotating with a positive angle theta rotates points on the positive // * x axis toward the positive y axis. // * @param theta the angle of rotation in radians // * @param x the x coordinate of the origin of the rotation // * @param y the y coordinate of the origin of the rotation // */ // public abstract void rotate(double theta, double x, double y); // // /** // * Concatenates the current Graphics2D // * Transform with a scaling transformation // * Subsequent rendering is resized according to the specified scaling // * factors relative to the previous scaling. // * This is equivalent to calling transform(S), where S is an // * AffineTransform represented by the following matrix: // *
     // *		[   sx   0    0   ]
     // *		[   0    sy   0   ]
     // *		[   0    0    1   ]
     // * 
// * @param sx the amount by which X coordinates in subsequent // * rendering operations are multiplied relative to previous // * rendering operations. // * @param sy the amount by which Y coordinates in subsequent // * rendering operations are multiplied relative to previous // * rendering operations. // */ // public abstract void scale(double sx, double sy); // // /** // * Concatenates the current Graphics2D // * Transform with a shearing transform. // * Subsequent renderings are sheared by the specified // * multiplier relative to the previous position. // * This is equivalent to calling transform(SH), where SH // * is an AffineTransform represented by the following // * matrix: // *
     // *		[   1   shx   0   ]
     // *		[  shy   1    0   ]
     // *		[   0    0    1   ]
     // * 
// * @param shx the multiplier by which coordinates are shifted in // * the positive X axis direction as a function of their Y coordinate // * @param shy the multiplier by which coordinates are shifted in // * the positive Y axis direction as a function of their X coordinate // */ // public abstract void shear(double shx, double shy); // // /** // * Composes an AffineTransform object with the // * Transform in this Graphics2D according // * to the rule last-specified-first-applied. If the current // * Transform is Cx, the result of composition // * with Tx is a new Transform Cx'. Cx' becomes the // * current Transform for this Graphics2D. // * Transforming a point p by the updated Transform Cx' is // * equivalent to first transforming p by Tx and then transforming // * the result by the original Transform Cx. In other // * words, Cx'(p) = Cx(Tx(p)). A copy of the Tx is made, if necessary, // * so further modifications to Tx do not affect rendering. // * @param Tx the AffineTransform object to be composed with // * the current Transform // * @see #setTransform // * @see AffineTransform // */ // public abstract void transform(AffineTransform Tx); // // /** // * Overwrites the Transform in the Graphics2D context. // * WARNING: This method should never be used to apply a new // * coordinate transform on top of an existing transform because the // * Graphics2D might already have a transform that is // * needed for other purposes, such as rendering Swing // * components or applying a scaling transformation to adjust for the // * resolution of a printer. // *

To add a coordinate transform, use the // * transform, rotate, scale, // * or shear methods. The setTransform // * method is intended only for restoring the original // * Graphics2D transform after rendering, as shown in this // * example: // *

// * // Get the current transform // * AffineTransform saveAT = g2.getTransform(); // * // Perform transformation // * g2d.transform(...); // * // Render // * g2d.draw(...); // * // Restore original transform // * g2d.setTransform(saveAT); // *
// * // * @param Tx the AffineTransform that was retrieved // * from the getTransform method // * @see #transform // * @see #getTransform // * @see AffineTransform // */ // public abstract void setTransform(AffineTransform Tx); // // /** // * Returns a copy of the current Transform in the // * Graphics2D context. // * @return the current AffineTransform in the // * Graphics2D context. // * @see #transform // * @see #setTransform // */ // public abstract AffineTransform getTransform(); // // /** // * Returns the current Paint of the // * Graphics2D context. // * @return the current Graphics2D Paint, // * which defines a color or pattern. // * @see #setPaint // * @see java.awt.Graphics#setColor // */ // public abstract Paint getPaint(); // /** * Returns the current Composite in the * Graphics2D context. * @return the current Graphics2D Composite, * which defines a compositing style. * @see #setComposite */ public abstract Composite getComposite(); // // /** // * Sets the background color for the Graphics2D context. // * The background color is used for clearing a region. // * When a Graphics2D is constructed for a // * Component, the background color is // * inherited from the Component. Setting the background color // * in the Graphics2D context only affects the subsequent // * clearRect calls and not the background color of the // * Component. To change the background // * of the Component, use appropriate methods of // * the Component. // * @param color the background color that isused in // * subsequent calls to clearRect // * @see #getBackground // * @see java.awt.Graphics#clearRect // */ // public abstract void setBackground(Color color); // // /** // * Returns the background color used for clearing a region. // * @return the current Graphics2D Color, // * which defines the background color. // * @see #setBackground // */ // public abstract Color getBackground(); // /** * Returns the current Stroke in the * Graphics2D context. * @return the current Graphics2D Stroke, * which defines the line style. * @see #setStroke */ public abstract Stroke getStroke(); // // /** // * Intersects the current Clip with the interior of the // * specified Shape and sets the Clip to the // * resulting intersection. The specified Shape is // * transformed with the current Graphics2D // * Transform before being intersected with the current // * Clip. This method is used to make the current // * Clip smaller. // * To make the Clip larger, use setClip. // * The user clip modified by this method is independent of the // * clipping associated with device bounds and visibility. If no clip has // * previously been set, or if the clip has been cleared using // * {@link Graphics#setClip(Shape) setClip} with a null // * argument, the specified Shape becomes the new // * user clip. // * @param s the Shape to be intersected with the current // * Clip. If s is null, // * this method clears the current Clip. // */ // public abstract void clip(Shape s); // // /** // * Get the rendering context of the Font within this // * Graphics2D context. // * The {@link FontRenderContext} // * encapsulates application hints such as anti-aliasing and // * fractional metrics, as well as target device specific information // * such as dots-per-inch. This information should be provided by the // * application when using objects that perform typographical // * formatting, such as Font and // * TextLayout. This information should also be provided // * by applications that perform their own layout and need accurate // * measurements of various characteristics of glyphs such as advance // * and line height when various rendering hints have been applied to // * the text rendering. // * // * @return a reference to an instance of FontRenderContext. // * @see java.awt.font.FontRenderContext // * @see java.awt.Font#createGlyphVector // * @see java.awt.font.TextLayout // * @since 1.2 // */ // public abstract FontRenderContext getFontRenderContext(); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy