All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.util.HashMap Maven / Gradle / Ivy

There is a newer version: 1.3.1
Show newest version
/*

This is not an official specification document, and usage is restricted.

NOTICE


(c) 2005-2007 Sun Microsystems, Inc. All Rights Reserved.

Neither this file nor any files generated from it describe a complete specification, and they may only be used as described below. For example, no permission is given for you to incorporate this file, in whole or in part, in an implementation of a Java specification.

Sun Microsystems Inc. owns the copyright in this file and it is provided to you for informative, as opposed to normative, use. The file and any files generated from it may be used to generate other informative documentation, such as a unified set of documents of API signatures for a platform that includes technologies expressed as Java APIs. The file may also be used to produce "compilation stubs," which allow applications to be compiled and validated for such platforms.

Any work generated from this file, such as unified javadocs or compiled stub files, must be accompanied by this notice in its entirety.

This work corresponds to the API signatures of JSR 219: Foundation Profile 1.1. In the event of a discrepency between this work and the JSR 219 specification, which is available at http://www.jcp.org/en/jsr/detail?id=219, the latter takes precedence. */ package java.util; import java.io.*; /** * Hash table based implementation of the Map interface. This * implementation provides all of the optional map operations, and permits * null values and the null key. (The HashMap * class is roughly equivalent to Hashtable, except that it is * unsynchronized and permits nulls.) This class makes no guarantees as to * the order of the map; in particular, it does not guarantee that the order * will remain constant over time. * *

This implementation provides constant-time performance for the basic * operations (get and put), assuming the hash function * disperses the elements properly among the buckets. Iteration over * collection views requires time proportional to the "capacity" of the * HashMap instance (the number of buckets) plus its size (the number * of key-value mappings). Thus, it's very important not to set the initial * capacity too high (or the load factor too low) if iteration performance is * important. * *

An instance of HashMap has two parameters that affect its * performance: initial capacity and load factor. The * capacity is the number of buckets in the hash table, and the initial * capacity is simply the capacity at the time the hash table is created. The * load factor is a measure of how full the hash table is allowed to * get before its capacity is automatically increased. When the number of * entries in the hash table exceeds the product of the load factor and the * current capacity, the capacity is roughly doubled by calling the * rehash method. * *

As a general rule, the default load factor (.75) offers a good tradeoff * between time and space costs. Higher values decrease the space overhead * but increase the lookup cost (reflected in most of the operations of the * HashMap class, including get and put). The * expected number of entries in the map and its load factor should be taken * into account when setting its initial capacity, so as to minimize the * number of rehash operations. If the initial capacity is greater * than the maximum number of entries divided by the load factor, no * rehash operations will ever occur. * *

If many mappings are to be stored in a HashMap instance, * creating it with a sufficiently large capacity will allow the mappings to * be stored more efficiently than letting it perform automatic rehashing as * needed to grow the table. * *

Note that this implementation is not synchronized. If multiple * threads access this map concurrently, and at least one of the threads * modifies the map structurally, it must be synchronized externally. * (A structural modification is any operation that adds or deletes one or * more mappings; merely changing the value associated with a key that an * instance already contains is not a structural modification.) This is * typically accomplished by synchronizing on some object that naturally * encapsulates the map. If no such object exists, the map should be * "wrapped" using the Collections.synchronizedMap method. This is * best done at creation time, to prevent accidental unsynchronized access to * the map:

 Map m = Collections.synchronizedMap(new HashMap(...));
 * 
* *

The iterators returned by all of this class's "collection view methods" * are fail-fast: if the map is structurally modified at any time after * the iterator is created, in any way except through the iterator's own * remove or add methods, the iterator will throw a * ConcurrentModificationException. Thus, in the face of concurrent * modification, the iterator fails quickly and cleanly, rather than risking * arbitrary, non-deterministic behavior at an undetermined time in the * future. * *

Note that the fail-fast behavior of an iterator cannot be guaranteed * as it is, generally speaking, impossible to make any hard guarantees in the * presence of unsynchronized concurrent modification. Fail-fast iterators * throw ConcurrentModificationException on a best-effort basis. * Therefore, it would be wrong to write a program that depended on this * exception for its correctness: the fail-fast behavior of iterators * should be used only to detect bugs. * *

This class is a member of the * * Java Collections Framework. * * @author Doug Lea * @author Josh Bloch * @author Arthur van Hoff * @version 1.38, 02/02/00 * @see Object#hashCode() * @see Collection * @see Map * @see TreeMap * @see Hashtable * @since 1.2 */ public class HashMap extends AbstractMap implements Map, Cloneable, Serializable { /** * The next size value at which to resize (capacity * load factor). * @serial */ int threshold; /** * The load factor for the hash table. * * @serial */ final float loadFactor; /** * Constructs an empty HashMap with the specified initial * capacity and load factor. * * @param initialCapacity The initial capacity. * @param loadFactor The load factor. * @throws IllegalArgumentException if the initial capacity is negative * or the load factor is nonpositive. */ public HashMap(int initialCapacity, float loadFactor) { this.loadFactor = loadFactor; } /** * Constructs an empty HashMap with the specified initial * capacity and the default load factor (0.75). * * @param initialCapacity the initial capacity. * @throws IllegalArgumentException if the initial capacity is negative. */ public HashMap(int initialCapacity) { loadFactor = 0.0f; } /** * Constructs an empty HashMap with the default initial capacity * (16) and the default load factor (0.75). */ public HashMap() { loadFactor = 0.0f; } /** * Constructs a new HashMap with the same mappings as the * specified Map. The HashMap is created with * default load factor (0.75) and an initial capacity sufficient to * hold the mappings in the specified Map. * * @param m the map whose mappings are to be placed in this map. * @throws NullPointerException if the specified map is null. */ public HashMap(Map m) { loadFactor = 0.0f; } /** * Returns the number of key-value mappings in this map. * * @return the number of key-value mappings in this map. */ public int size() { return 0; } /** * Returns true if this map contains no key-value mappings. * * @return true if this map contains no key-value mappings. */ public boolean isEmpty() { return false; } /** * Returns the value to which the specified key is mapped in this identity * hash map, or null if the map contains no mapping for this key. * A return value of null does not necessarily indicate * that the map contains no mapping for the key; it is also possible that * the map explicitly maps the key to null. The * containsKey method may be used to distinguish these two cases. * * @param key the key whose associated value is to be returned. * @return the value to which this map maps the specified key, or * null if the map contains no mapping for this key. * @see #put(Object, Object) */ public Object get(Object key) { return null; } /** * Returns true if this map contains a mapping for the * specified key. * * @param key The key whose presence in this map is to be tested * @return true if this map contains a mapping for the specified * key. */ public boolean containsKey(Object key) { return false; } /** * Associates the specified value with the specified key in this map. * If the map previously contained a mapping for this key, the old * value is replaced. * * @param key key with which the specified value is to be associated. * @param value value to be associated with the specified key. * @return previous value associated with specified key, or null * if there was no mapping for key. A null return can * also indicate that the HashMap previously associated * null with the specified key. */ public Object put(Object key, Object value) { return null; } /** * Copies all of the mappings from the specified map to this map * These mappings will replace any mappings that * this map had for any of the keys currently in the specified map. * * @param m mappings to be stored in this map. * @throws NullPointerException if the specified map is null. */ public void putAll(Map m) { } /** * Removes the mapping for this key from this map if present. * * @param key key whose mapping is to be removed from the map. * @return previous value associated with specified key, or null * if there was no mapping for key. A null return can * also indicate that the map previously associated null * with the specified key. */ public Object remove(Object key) { return null; } /** * Removes all mappings from this map. */ public void clear() { } /** * Returns true if this map maps one or more keys to the * specified value. * * @param value value whose presence in this map is to be tested. * @return true if this map maps one or more keys to the * specified value. */ public boolean containsValue(Object value) { return false; } /** * Returns a shallow copy of this HashMap instance: the keys and * values themselves are not cloned. * * @return a shallow copy of this map. */ public Object clone() { return null; } /** * Returns a set view of the keys contained in this map. The set is * backed by the map, so changes to the map are reflected in the set, and * vice-versa. The set supports element removal, which removes the * corresponding mapping from this map, via the Iterator.remove, * Set.remove, removeAll, retainAll, and * clear operations. It does not support the add or * addAll operations. * * @return a set view of the keys contained in this map. */ public Set keySet() { return null; } /** * Returns a collection view of the values contained in this map. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from this map, via the * Iterator.remove, Collection.remove, * removeAll, retainAll, and clear operations. * It does not support the add or addAll operations. * * @return a collection view of the values contained in this map. */ public Collection values() { return null; } /** * Returns a collection view of the mappings contained in this map. Each * element in the returned collection is a Map.Entry. The * collection is backed by the map, so changes to the map are reflected in * the collection, and vice-versa. The collection supports element * removal, which removes the corresponding mapping from the map, via the * Iterator.remove, Collection.remove, * removeAll, retainAll, and clear operations. * It does not support the add or addAll operations. * * @return a collection view of the mappings contained in this map. * @see Map.Entry */ public Set entrySet() { return null; } /** * Reconstitute the HashMap instance from a stream (i.e., * deserialize it). */ private void readObject(ObjectInputStream s) throws IOException, ClassNotFoundException { } /** * Save the state of the HashMap instance to a stream (i.e., * serialize it). * * @serialData The capacity of the HashMap (the length of the * bucket array) is emitted (int), followed by the * size of the HashMap (the number of key-value * mappings), followed by the key (Object) and value (Object) * for each key-value mapping represented by the HashMap * The key-value mappings are emitted in the order that they * are returned by entrySet().iterator(). * */ private void writeObject(ObjectOutputStream s) throws IOException { } private static final long serialVersionUID = 362498820763181265L; static class Entry implements Map.Entry { public Object getKey() { return null; } public Object getValue() { return null; } public Object setValue(Object newValue) { return null; } public boolean equals(Object o) { return false; } public int hashCode() { return 0; } public String toString() { return null; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy