All Downloads are FREE. Search and download functionalities are using the official Maven repository.

java.io.InputStream Maven / Gradle / Ivy

There is a newer version: 1.3.1
Show newest version
/*

This is not an official specification document, and usage is restricted.

NOTICE


(c) 2005-2007 Sun Microsystems, Inc. All Rights Reserved.

Neither this file nor any files generated from it describe a complete specification, and they may only be used as described below. For example, no permission is given for you to incorporate this file, in whole or in part, in an implementation of a Java specification.

Sun Microsystems Inc. owns the copyright in this file and it is provided to you for informative, as opposed to normative, use. The file and any files generated from it may be used to generate other informative documentation, such as a unified set of documents of API signatures for a platform that includes technologies expressed as Java APIs. The file may also be used to produce "compilation stubs," which allow applications to be compiled and validated for such platforms.

Any work generated from this file, such as unified javadocs or compiled stub files, must be accompanied by this notice in its entirety.

This work corresponds to the API signatures of JSR 219: Foundation Profile 1.1. In the event of a discrepency between this work and the JSR 219 specification, which is available at http://www.jcp.org/en/jsr/detail?id=219, the latter takes precedence. */ package java.io; /** * This abstract class is the superclass of all classes representing * an input stream of bytes. * *

Applications that need to define a subclass of InputStream * must always provide a method that returns the next byte of input. * * @author Arthur van Hoff * @version 1.36, 02/02/00 * @see java.io.BufferedInputStream * @see java.io.ByteArrayInputStream * @see java.io.DataInputStream * @see java.io.FilterInputStream * @see java.io.InputStream#read() * @see java.io.OutputStream * @see java.io.PushbackInputStream * @since JDK1.0 */ public abstract class InputStream { public InputStream() { } /** * Reads the next byte of data from the input stream. The value byte is * returned as an int in the range 0 to * 255. If no byte is available because the end of the stream * has been reached, the value -1 is returned. This method * blocks until input data is available, the end of the stream is detected, * or an exception is thrown. * *

A subclass must provide an implementation of this method. * * @return the next byte of data, or -1 if the end of the * stream is reached. * @exception IOException if an I/O error occurs. */ public abstract int read() throws IOException; /** * Reads some number of bytes from the input stream and stores them into * the buffer array b. The number of bytes actually read is * returned as an integer. This method blocks until input data is * available, end of file is detected, or an exception is thrown. * *

If b is null, a * NullPointerException is thrown. If the length of * b is zero, then no bytes are read and 0 is * returned; otherwise, there is an attempt to read at least one byte. If * no byte is available because the stream is at end of file, the value * -1 is returned; otherwise, at least one byte is read and * stored into b. * *

The first byte read is stored into element b[0], the * next one into b[1], and so on. The number of bytes read is, * at most, equal to the length of b. Let k be the * number of bytes actually read; these bytes will be stored in elements * b[0] through b[k-1], * leaving elements b[k] through * b[b.length-1] unaffected. * *

If the first byte cannot be read for any reason other than end of * file, then an IOException is thrown. In particular, an * IOException is thrown if the input stream has been closed. * *

The read(b) method for class InputStream * has the same effect as:

 read(b, 0, b.length) 
* * @param b the buffer into which the data is read. * @return the total number of bytes read into the buffer, or * -1 is there is no more data because the end of * the stream has been reached. * @exception IOException if an I/O error occurs. * @exception NullPointerException if b is null. * @see java.io.InputStream#read(byte[], int, int) */ public int read(byte[] b) throws IOException { return 0; } /** * Reads up to len bytes of data from the input stream into * an array of bytes. An attempt is made to read as many as * len bytes, but a smaller number may be read, possibly * zero. The number of bytes actually read is returned as an integer. * *

This method blocks until input data is available, end of file is * detected, or an exception is thrown. * *

If b is null, a * NullPointerException is thrown. * *

If off is negative, or len is negative, or * off+len is greater than the length of the array * b, then an IndexOutOfBoundsException is * thrown. * *

If len is zero, then no bytes are read and * 0 is returned; otherwise, there is an attempt to read at * least one byte. If no byte is available because the stream is at end of * file, the value -1 is returned; otherwise, at least one * byte is read and stored into b. * *

The first byte read is stored into element b[off], the * next one into b[off+1], and so on. The number of bytes read * is, at most, equal to len. Let k be the number of * bytes actually read; these bytes will be stored in elements * b[off] through b[off+k-1], * leaving elements b[off+k] through * b[off+len-1] unaffected. * *

In every case, elements b[0] through * b[off] and elements b[off+len] through * b[b.length-1] are unaffected. * *

If the first byte cannot be read for any reason other than end of * file, then an IOException is thrown. In particular, an * IOException is thrown if the input stream has been closed. * *

The read(b, off, len) method * for class InputStream simply calls the method * read() repeatedly. If the first such call results in an * IOException, that exception is returned from the call to * the read(b, off, len) method. If * any subsequent call to read() results in a * IOException, the exception is caught and treated as if it * were end of file; the bytes read up to that point are stored into * b and the number of bytes read before the exception * occurred is returned. Subclasses are encouraged to provide a more * efficient implementation of this method. * * @param b the buffer into which the data is read. * @param off the start offset in array b * at which the data is written. * @param len the maximum number of bytes to read. * @return the total number of bytes read into the buffer, or * -1 if there is no more data because the end of * the stream has been reached. * @exception IOException if an I/O error occurs. * @exception NullPointerException if b is null. * @see java.io.InputStream#read() */ public int read(byte[] b, int off, int len) throws IOException { return 0; } /** * Skips over and discards n bytes of data from this input * stream. The skip method may, for a variety of reasons, end * up skipping over some smaller number of bytes, possibly 0. * This may result from any of a number of conditions; reaching end of file * before n bytes have been skipped is only one possibility. * The actual number of bytes skipped is returned. If n is * negative, no bytes are skipped. * *

The skip method of InputStream creates a * byte array and then repeatedly reads into it until n bytes * have been read or the end of the stream has been reached. Subclasses are * encouraged to provide a more efficient implementation of this method. * * @param n the number of bytes to be skipped. * @return the actual number of bytes skipped. * @exception IOException if an I/O error occurs. */ public long skip(long n) throws IOException { return -1; } /** * Returns the number of bytes that can be read (or skipped over) from * this input stream without blocking by the next caller of a method for * this input stream. The next caller might be the same thread or or * another thread. * *

The available method for class InputStream * always returns 0. * *

This method should be overridden by subclasses. * * @return the number of bytes that can be read from this input stream * without blocking. * @exception IOException if an I/O error occurs. */ public int available() throws IOException { return 0; } /** * Closes this input stream and releases any system resources associated * with the stream. * *

The close method of InputStream does * nothing. * * @exception IOException if an I/O error occurs. */ public void close() throws IOException { } /** * Marks the current position in this input stream. A subsequent call to * the reset method repositions this stream at the last marked * position so that subsequent reads re-read the same bytes. * *

The readlimit arguments tells this input stream to * allow that many bytes to be read before the mark position gets * invalidated. * *

The general contract of mark is that, if the method * markSupported returns true, the stream somehow * remembers all the bytes read after the call to mark and * stands ready to supply those same bytes again if and whenever the method * reset is called. However, the stream is not required to * remember any data at all if more than readlimit bytes are * read from the stream before reset is called. * *

The mark method of InputStream does * nothing. * * @param readlimit the maximum limit of bytes that can be read before * the mark position becomes invalid. * @see java.io.InputStream#reset() */ public synchronized void mark(int readlimit) { } /** * Repositions this stream to the position at the time the * mark method was last called on this input stream. * *

The general contract of reset is: * *

    * *
  • If the method markSupported returns * true, then: * *
    • If the method mark has not been called since * the stream was created, or the number of bytes read from the stream * since mark was last called is larger than the argument * to mark at that last call, then an * IOException might be thrown. * *
    • If such an IOException is not thrown, then the * stream is reset to a state such that all the bytes read since the * most recent call to mark (or since the start of the * file, if mark has not been called) will be resupplied * to subsequent callers of the read method, followed by * any bytes that otherwise would have been the next input data as of * the time of the call to reset.
    * *
  • If the method markSupported returns * false, then: * *
    • The call to reset may throw an * IOException. * *
    • If an IOException is not thrown, then the stream * is reset to a fixed state that depends on the particular type of the * input stream and how it was created. The bytes that will be supplied * to subsequent callers of the read method depend on the * particular type of the input stream.
* *

The method reset for class InputStream * does nothing and always throws an IOException. * * @exception IOException if this stream has not been marked or if the * mark has been invalidated. * @see java.io.InputStream#mark(int) * @see java.io.IOException */ public synchronized void reset() throws IOException { } /** * Tests if this input stream supports the mark and * reset methods. Whether or not mark and * reset are supported is an invariant property of a * particular input stream instance. The markSupported method * of InputStream returns false. * * @return true if this stream instance supports the mark * and reset methods; false otherwise. * @see java.io.InputStream#mark(int) * @see java.io.InputStream#reset() */ public boolean markSupported() { return false; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy