All Downloads are FREE. Search and download functionalities are using the official Maven repository.

mockit.external.asm.MethodWriter Maven / Gradle / Ivy

Go to download

JMockit is a Java toolkit for developer (unit/integration) testing. It contains mocking APIs and other tools, supporting both JUnit and TestNG. The mocking APIs allow all kinds of Java code, without testability restrictions, to be tested in isolation from selected dependencies.

There is a newer version: 1.7
Show newest version
/***
 * ASM: a very small and fast Java bytecode manipulation framework
 * Copyright (c) 2000-2005 INRIA, France Telecom
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 * 3. Neither the name of the copyright holders nor the names of its
 *    contributors may be used to endorse or promote products derived from
 *    this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
 * THE POSSIBILITY OF SUCH DAMAGE.
 */
package mockit.external.asm;

/**
 * A {@link MethodVisitor} that generates methods in bytecode form. Each visit
 * method of this class appends the bytecode corresponding to the visited
 * instruction to a byte vector, in the order these methods are called.
 * 
 * @author Eric Bruneton
 * @author Eugene Kuleshov
 */
public final class MethodWriter implements MethodVisitor
{
    /**
     * Next method writer (see {@link ClassWriter#firstMethod firstMethod}).
     */
    MethodWriter next;

    /**
     * The class writer to which this method must be added.
     */
    ClassWriter cw;

    /**
     * Access flags of this method.
     */
    private final int access;

    /**
     * The index of the constant pool item that contains the name of this
     * method.
     */
    private final int name;

    /**
     * The index of the constant pool item that contains the descriptor of this
     * method.
     */
    private final int desc;

    /**
     * The descriptor of this method.
     */
    private final String descriptor;

    /**
     * If not zero, indicates that the code of this method must be copied from
     * the ClassReader associated to this writer in cw.cr. More
     * precisely, this field gives the index of the first byte to copied from
     * cw.cr.b.
     */
    int classReaderOffset;

    /**
     * If not zero, indicates that the code of this method must be copied from
     * the ClassReader associated to this writer in cw.cr. More
     * precisely, this field gives the number of bytes to copied from
     * cw.cr.b.
     */
    int classReaderLength;

    /**
     * The signature of this method.
     */
    String signature;

    /**
     * Number of exceptions that can be thrown by this method.
     */
    int exceptionCount;

    /**
     * The exceptions that can be thrown by this method. More precisely, this
     * array contains the indexes of the constant pool items that contain the
     * internal names of these exception classes.
     */
    int[] exceptions;

    /**
     * The annotation default attribute of this method. May be null.
     */
    private ByteVector annd;

    /**
     * The runtime visible annotations of this method. May be null.
     */
    private AnnotationWriter anns;

    /**
     * The runtime invisible annotations of this method. May be null.
     */
    private AnnotationWriter ianns;

    /**
     * The runtime visible parameter annotations of this method. May be
     * null.
     */
    private AnnotationWriter[] panns;

    /**
     * The runtime invisible parameter annotations of this method. May be
     * null.
     */
    private AnnotationWriter[] ipanns;

    /**
     * The non standard attributes of the method.
     */
    private Attribute attrs;

    /**
     * The bytecode of this method.
     */
    private ByteVector code = new ByteVector();

    /**
     * Maximum stack size of this method.
     */
    private int maxStack;

    /**
     * Maximum number of local variables for this method.
     */
    private int maxLocals;

    /**
     * Number of entries in the catch table of this method.
     */
    private int catchCount;

    /**
     * The catch table of this method.
     */
    private Handler catchTable;

    /**
     * The last element in the catchTable handler list.
     */
    private Handler lastHandler;

    /**
     * Number of entries in the LocalVariableTable attribute.
     */
    private int localVarCount;

    /**
     * The LocalVariableTable attribute.
     */
    private ByteVector localVar;

    /**
     * Number of entries in the LocalVariableTypeTable attribute.
     */
    private int localVarTypeCount;

    /**
     * The LocalVariableTypeTable attribute.
     */
    private ByteVector localVarType;

    /**
     * Number of entries in the LineNumberTable attribute.
     */
    private int lineNumberCount;

    /**
     * The LineNumberTable attribute.
     */
    private ByteVector lineNumber;

    /**
     * The non standard attributes of the method's code.
     */
    private Attribute cattrs;

    /**
     * Indicates if some jump instructions are too small and need to be resized.
     */
    private boolean resize;

    /*
     * Fields for the control flow graph analysis algorithm (used to compute the
     * maximum stack size). A control flow graph contains one node per "basic
     * block", and one edge per "jump" from one basic block to another. Each
     * node (i.e., each basic block) is represented by the Label object that
     * corresponds to the first instruction of this basic block. Each node also
     * stores the list of its successors in the graph, as a linked list of Edge
     * objects.
     */

    /**
     * true if the maximum stack size and number of local variables
     * must be automatically computed.
     */
    private final boolean computeMaxs;

    /**
     * The (relative) stack size after the last visited instruction. This size
     * is relative to the beginning of the current basic block, i.e., the true
     * stack size after the last visited instruction is equal to the {@link
     * Label#beginStackSize beginStackSize} of the current basic block plus
     * stackSize.
     */
    private int stackSize;

    // Created to avoid issues with the Eclipse compiler.
    public int stackSize2;

    /**
     * The (relative) maximum stack size after the last visited instruction.
     * This size is relative to the beginning of the current basic block, i.e.,
     * the true maximum stack size after the last visited instruction is equal
     * to the {@link Label#beginStackSize beginStackSize} of the current basic
     * block plus stackSize.
     */
    private int maxStackSize;

    /**
     * The current basic block. This block is the basic block to which the next
     * instruction to be visited must be added.
     */
    public Label currentBlock;

    /**
     * The basic block stack used by the control flow analysis algorithm. This
     * stack is represented by a linked list of {@link Label Label} objects,
     * linked to each other by their {@link Label#next} field. This stack must
     * not be confused with the JVM stack used to execute the JVM instructions!
     */
    private Label blockStack;

    /**
     * The stack size variation corresponding to each JVM instruction. This
     * stack variation is equal to the size of the values produced by an
     * instruction, minus the size of the values consumed by this instruction.
     */
    private static final int[] SIZE;

    // ------------------------------------------------------------------------
    // Static initializer
    // ------------------------------------------------------------------------

    /**
     * Computes the stack size variation corresponding to each JVM instruction.
     */
    static {
        int[] b = new int[202];
        int i;
        String s = "EFFFFFFFFGGFFFGGFFFEEFGFGFEEEEEEEEEEEEEEEEEEEEDEDEDDDDD"
                + "CDCDEEEEEEEEEEEEEEEEEEEEBABABBBBDCFFFGGGEDCDCDCDCDCDCDCDCD"
                + "CDCEEEEDDDDDDDCDCDCEFEFDDEEFFDEDEEEBDDBBDDDDDDCCCCCCCCEFED"
                + "DDCDCDEEEEEEEEEEFEEEEEEDDEEDDEE";
        for (i = 0; i < b.length; ++i) {
            b[i] = s.charAt(i) - 'E';
        }
        SIZE = b;

        // code to generate the above string
        //
        // int NA = 0; // not applicable (unused opcode or variable size opcode)
        //
        // b = new int[] {
        // 0, //NOP, // visitInsn
        // 1, //ACONST_NULL, // -
        // 1, //ICONST_M1, // -
        // 1, //ICONST_0, // -
        // 1, //ICONST_1, // -
        // 1, //ICONST_2, // -
        // 1, //ICONST_3, // -
        // 1, //ICONST_4, // -
        // 1, //ICONST_5, // -
        // 2, //LCONST_0, // -
        // 2, //LCONST_1, // -
        // 1, //FCONST_0, // -
        // 1, //FCONST_1, // -
        // 1, //FCONST_2, // -
        // 2, //DCONST_0, // -
        // 2, //DCONST_1, // -
        // 1, //BIPUSH, // visitIntInsn
        // 1, //SIPUSH, // -
        // 1, //LDC, // visitLdcInsn
        // NA, //LDC_W, // -
        // NA, //LDC2_W, // -
        // 1, //ILOAD, // visitVarInsn
        // 2, //LLOAD, // -
        // 1, //FLOAD, // -
        // 2, //DLOAD, // -
        // 1, //ALOAD, // -
        // NA, //ILOAD_0, // -
        // NA, //ILOAD_1, // -
        // NA, //ILOAD_2, // -
        // NA, //ILOAD_3, // -
        // NA, //LLOAD_0, // -
        // NA, //LLOAD_1, // -
        // NA, //LLOAD_2, // -
        // NA, //LLOAD_3, // -
        // NA, //FLOAD_0, // -
        // NA, //FLOAD_1, // -
        // NA, //FLOAD_2, // -
        // NA, //FLOAD_3, // -
        // NA, //DLOAD_0, // -
        // NA, //DLOAD_1, // -
        // NA, //DLOAD_2, // -
        // NA, //DLOAD_3, // -
        // NA, //ALOAD_0, // -
        // NA, //ALOAD_1, // -
        // NA, //ALOAD_2, // -
        // NA, //ALOAD_3, // -
        // -1, //IALOAD, // visitInsn
        // 0, //LALOAD, // -
        // -1, //FALOAD, // -
        // 0, //DALOAD, // -
        // -1, //AALOAD, // -
        // -1, //BALOAD, // -
        // -1, //CALOAD, // -
        // -1, //SALOAD, // -
        // -1, //ISTORE, // visitVarInsn
        // -2, //LSTORE, // -
        // -1, //FSTORE, // -
        // -2, //DSTORE, // -
        // -1, //ASTORE, // -
        // NA, //ISTORE_0, // -
        // NA, //ISTORE_1, // -
        // NA, //ISTORE_2, // -
        // NA, //ISTORE_3, // -
        // NA, //LSTORE_0, // -
        // NA, //LSTORE_1, // -
        // NA, //LSTORE_2, // -
        // NA, //LSTORE_3, // -
        // NA, //FSTORE_0, // -
        // NA, //FSTORE_1, // -
        // NA, //FSTORE_2, // -
        // NA, //FSTORE_3, // -
        // NA, //DSTORE_0, // -
        // NA, //DSTORE_1, // -
        // NA, //DSTORE_2, // -
        // NA, //DSTORE_3, // -
        // NA, //ASTORE_0, // -
        // NA, //ASTORE_1, // -
        // NA, //ASTORE_2, // -
        // NA, //ASTORE_3, // -
        // -3, //IASTORE, // visitInsn
        // -4, //LASTORE, // -
        // -3, //FASTORE, // -
        // -4, //DASTORE, // -
        // -3, //AASTORE, // -
        // -3, //BASTORE, // -
        // -3, //CASTORE, // -
        // -3, //SASTORE, // -
        // -1, //POP, // -
        // -2, //POP2, // -
        // 1, //DUP, // -
        // 1, //DUP_X1, // -
        // 1, //DUP_X2, // -
        // 2, //DUP2, // -
        // 2, //DUP2_X1, // -
        // 2, //DUP2_X2, // -
        // 0, //SWAP, // -
        // -1, //IADD, // -
        // -2, //LADD, // -
        // -1, //FADD, // -
        // -2, //DADD, // -
        // -1, //ISUB, // -
        // -2, //LSUB, // -
        // -1, //FSUB, // -
        // -2, //DSUB, // -
        // -1, //IMUL, // -
        // -2, //LMUL, // -
        // -1, //FMUL, // -
        // -2, //DMUL, // -
        // -1, //IDIV, // -
        // -2, //LDIV, // -
        // -1, //FDIV, // -
        // -2, //DDIV, // -
        // -1, //IREM, // -
        // -2, //LREM, // -
        // -1, //FREM, // -
        // -2, //DREM, // -
        // 0, //INEG, // -
        // 0, //LNEG, // -
        // 0, //FNEG, // -
        // 0, //DNEG, // -
        // -1, //ISHL, // -
        // -1, //LSHL, // -
        // -1, //ISHR, // -
        // -1, //LSHR, // -
        // -1, //IUSHR, // -
        // -1, //LUSHR, // -
        // -1, //IAND, // -
        // -2, //LAND, // -
        // -1, //IOR, // -
        // -2, //LOR, // -
        // -1, //IXOR, // -
        // -2, //LXOR, // -
        // 0, //IINC, // visitIincInsn
        // 1, //I2L, // visitInsn
        // 0, //I2F, // -
        // 1, //I2D, // -
        // -1, //L2I, // -
        // -1, //L2F, // -
        // 0, //L2D, // -
        // 0, //F2I, // -
        // 1, //F2L, // -
        // 1, //F2D, // -
        // -1, //D2I, // -
        // 0, //D2L, // -
        // -1, //D2F, // -
        // 0, //I2B, // -
        // 0, //I2C, // -
        // 0, //I2S, // -
        // -3, //LCMP, // -
        // -1, //FCMPL, // -
        // -1, //FCMPG, // -
        // -3, //DCMPL, // -
        // -3, //DCMPG, // -
        // -1, //IFEQ, // visitJumpInsn
        // -1, //IFNE, // -
        // -1, //IFLT, // -
        // -1, //IFGE, // -
        // -1, //IFGT, // -
        // -1, //IFLE, // -
        // -2, //IF_ICMPEQ, // -
        // -2, //IF_ICMPNE, // -
        // -2, //IF_ICMPLT, // -
        // -2, //IF_ICMPGE, // -
        // -2, //IF_ICMPGT, // -
        // -2, //IF_ICMPLE, // -
        // -2, //IF_ACMPEQ, // -
        // -2, //IF_ACMPNE, // -
        // 0, //GOTO, // -
        // 1, //JSR, // -
        // 0, //RET, // visitVarInsn
        // -1, //TABLESWITCH, // visiTableSwitchInsn
        // -1, //LOOKUPSWITCH, // visitLookupSwitch
        // -1, //IRETURN, // visitInsn
        // -2, //LRETURN, // -
        // -1, //FRETURN, // -
        // -2, //DRETURN, // -
        // -1, //ARETURN, // -
        // 0, //RETURN, // -
        // NA, //GETSTATIC, // visitFieldInsn
        // NA, //PUTSTATIC, // -
        // NA, //GETFIELD, // -
        // NA, //PUTFIELD, // -
        // NA, //INVOKEVIRTUAL, // visitMethodInsn
        // NA, //INVOKESPECIAL, // -
        // NA, //INVOKESTATIC, // -
        // NA, //INVOKEINTERFACE, // -
        // NA, //UNUSED, // NOT VISITED
        // 1, //NEW, // visitTypeInsn
        // 0, //NEWARRAY, // visitIntInsn
        // 0, //ANEWARRAY, // visitTypeInsn
        // 0, //ARRAYLENGTH, // visitInsn
        // NA, //ATHROW, // -
        // 0, //CHECKCAST, // visitTypeInsn
        // 0, //INSTANCEOF, // -
        // -1, //MONITORENTER, // visitInsn
        // -1, //MONITOREXIT, // -
        // NA, //WIDE, // NOT VISITED
        // NA, //MULTIANEWARRAY, // visitMultiANewArrayInsn
        // -1, //IFNULL, // visitJumpInsn
        // -1, //IFNONNULL, // -
        // NA, //GOTO_W, // -
        // NA, //JSR_W, // -
        // };
        // for (i = 0; i < b.length; ++i) {
        // System.err.print((char)('E' + b[i]));
        // }
        // System.err.println();
    }

    // ------------------------------------------------------------------------
    // Constructor
    // ------------------------------------------------------------------------

    /**
     * Constructs a new MethodWriter.
     * 
     * @param cw the class writer in which the method must be added.
     * @param access the method's access flags (see {@link Opcodes}).
     * @param name the method's name.
     * @param desc the method's descriptor (see {@link Type}).
     * @param signature the method's signature. May be null.
     * @param exceptions the internal names of the method's exceptions. May be
     *        null.
     * @param computeMaxs true if the maximum stack size and number
     *        of local variables must be automatically computed.
     */
    MethodWriter(
        ClassWriter cw, int access, String name, String desc, String signature, String[] exceptions,
        boolean computeMaxs)
    {
        if (cw.firstMethod == null) {
            cw.firstMethod = this;
        } else {
            cw.lastMethod.next = this;
        }
        cw.lastMethod = this;
        this.cw = cw;
        this.access = access;
        this.name = cw.newUTF8(name);
        this.desc = cw.newUTF8(desc);
        descriptor = desc;
        this.signature = signature;
        if (exceptions != null && exceptions.length > 0) {
            exceptionCount = exceptions.length;
            this.exceptions = new int[exceptionCount];
            for (int i = 0; i < exceptionCount; ++i) {
                this.exceptions[i] = cw.newClass(exceptions[i]);
            }
        }
        this.computeMaxs = computeMaxs;
        if (computeMaxs) {
            // updates maxLocals
            int size = getArgumentsAndReturnSizes(desc) >> 2;
            if ((access & Opcodes.ACC_STATIC) != 0) {
                --size;
            }
            maxLocals = size;
            // pushes the first block onto the stack of blocks to be visited
            currentBlock = new Label();
            currentBlock.pushed = true;
            blockStack = currentBlock;
        }
    }

    // ------------------------------------------------------------------------
    // Implementation of the MethodVisitor interface
    // ------------------------------------------------------------------------

    public AnnotationVisitor visitAnnotationDefault() {
        annd = new ByteVector();
        return new AnnotationWriter(cw, false, annd, null, 0);
    }

    public AnnotationVisitor visitAnnotation(String desc, boolean visible)
    {
        ByteVector bv = new ByteVector();
        // write type, and reserve space for values count
        bv.putShort(cw.newUTF8(desc)).putShort(0);
        AnnotationWriter aw = new AnnotationWriter(cw, true, bv, bv, 2);
        if (visible) {
            aw.next = anns;
            anns = aw;
        } else {
            aw.next = ianns;
            ianns = aw;
        }
        return aw;
    }

    public AnnotationVisitor visitParameterAnnotation(int parameter, String desc, boolean visible)
    {
        ByteVector bv = new ByteVector();
        // write type, and reserve space for values count
        bv.putShort(cw.newUTF8(desc)).putShort(0);
        AnnotationWriter aw = new AnnotationWriter(cw, true, bv, bv, 2);
        if (visible) {
            if (panns == null) {
                panns = new AnnotationWriter[Type.getArgumentTypes(descriptor).length];
            }
            aw.next = panns[parameter];
            panns[parameter] = aw;
        } else {
            if (ipanns == null) {
                ipanns = new AnnotationWriter[Type.getArgumentTypes(descriptor).length];
            }
            aw.next = ipanns[parameter];
            ipanns[parameter] = aw;
        }
        return aw;
    }

    public void visitAttribute(Attribute attr) {
        if (attr.isCodeAttribute()) {
            attr.next = cattrs;
            cattrs = attr;
        } else {
            attr.next = attrs;
            attrs = attr;
        }
    }

    public void visitCode() {
    }

    public void visitInsn(int opcode) {
        if (computeMaxs) {
            // updates current and max stack sizes
            updateCurrentAndMaxStackSizes(SIZE[opcode]);
            // if opcode == ATHROW or xRETURN, ends current block (no successor)
            if (opcode >= Opcodes.IRETURN && opcode <= Opcodes.RETURN || opcode == Opcodes.ATHROW)
            {
                if (currentBlock != null) {
                    currentBlock.maxStackSize = maxStackSize;
                    currentBlock = null;
                }
            }
        }
        // adds the instruction to the bytecode of the method
        code.putByte(opcode);
    }

    public void visitIntInsn(int opcode, int operand) {
        if (computeMaxs && opcode != Opcodes.NEWARRAY) {
            // updates current and max stack sizes only if opcode == NEWARRAY
            // (stack size variation = 0 for BIPUSH or SIPUSH)
            updateCurrentAndMaxStackSizes(1);
        }
        // adds the instruction to the bytecode of the method
        if (opcode == Opcodes.SIPUSH) {
            code.put12(opcode, operand);
        } else { // BIPUSH or NEWARRAY
            code.put11(opcode, operand);
        }
    }

    public void visitVarInsn(int opcode, int var) {
        if (computeMaxs) {
            // updates current and max stack sizes
            if (opcode == Opcodes.RET) {
                // no stack change, but end of current block (no successor)
                if (currentBlock != null) {
                    currentBlock.maxStackSize = maxStackSize;
                    currentBlock = null;
                }
            } else { // xLOAD or xSTORE
               updateCurrentAndMaxStackSizes(SIZE[opcode]);
            }
            // updates max locals
            int n;
            if (opcode == Opcodes.LLOAD || opcode == Opcodes.DLOAD
                    || opcode == Opcodes.LSTORE || opcode == Opcodes.DSTORE)
            {
                n = var + 2;
            } else {
                n = var + 1;
            }
            if (n > maxLocals) {
                maxLocals = n;
            }
        }
        // adds the instruction to the bytecode of the method
        if (var < 4 && opcode != Opcodes.RET) {
            int opt;
            if (opcode < Opcodes.ISTORE) {
                /* ILOAD_0 */
                opt = 26 + ((opcode - Opcodes.ILOAD) << 2) + var;
            } else {
                /* ISTORE_0 */
                opt = 59 + ((opcode - Opcodes.ISTORE) << 2) + var;
            }
            code.putByte(opt);
        } else if (var >= 256) {
            code.putByte(196 /* WIDE */).put12(opcode, var);
        } else {
            code.put11(opcode, var);
        }
    }

    public void visitTypeInsn(int opcode, String desc) {
        if (computeMaxs && opcode == Opcodes.NEW) {
            // updates current and max stack sizes only if opcode == NEW
            // (stack size variation = 0 for ANEWARRAY, CHECKCAST, INSTANCEOF)
            updateCurrentAndMaxStackSizes(1);
        }
        // adds the instruction to the bytecode of the method
        code.put12(opcode, cw.newClass(desc));
    }

    public void visitFieldInsn(int opcode, String owner, String name, String desc)
    {
        if (computeMaxs) {
            int sizeVariation;
            // computes the stack size variation
            char c = desc.charAt(0);
            switch (opcode) {
                case Opcodes.GETSTATIC:
                    sizeVariation = c == 'D' || c == 'J' ? 2 : 1;
                    break;
                case Opcodes.PUTSTATIC:
                    sizeVariation = c == 'D' || c == 'J' ? -2 : -1;
                    break;
                case Opcodes.GETFIELD:
                    sizeVariation = c == 'D' || c == 'J' ? 1 : 0;
                    break;
                // case Constants.PUTFIELD:
                default:
                    sizeVariation = c == 'D' || c == 'J' ? -3 : -2;
                    break;
            }
            updateCurrentAndMaxStackSizes(sizeVariation);
        }
        // adds the instruction to the bytecode of the method
        code.put12(opcode, cw.newField(owner, name, desc));
    }

    public void visitMethodInsn(int opcode, String owner, String name, String desc)
    {
        boolean itf = opcode == Opcodes.INVOKEINTERFACE;
        Item i = cw.newMethodItem(owner, name, desc, itf);
        int argSize = i.intVal;
        if (computeMaxs) {
            /*
             * computes the stack size variation. In order not to recompute
             * several times this variation for the same Item, we use the intVal
             * field of this item to store this variation, once it has been
             * computed. More precisely this intVal field stores the sizes of
             * the arguments and of the return value corresponding to desc.
             */
            if (argSize == 0) {
                // the above sizes have not been computed yet, so we compute
                // them...
                argSize = getArgumentsAndReturnSizes(desc);
                // ... and we save them in order not to recompute them in the
                // future
                i.intVal = argSize;
            }
            int sizeVariation;
            if (opcode == Opcodes.INVOKESTATIC) {
                sizeVariation = -(argSize >> 2) + (argSize & 0x03) + 1;
            } else {
                sizeVariation = -(argSize >> 2) + (argSize & 0x03);
            }
            updateCurrentAndMaxStackSizes(sizeVariation);
        }
        // adds the instruction to the bytecode of the method
        if (itf) {
            if (!computeMaxs) {
                if (argSize == 0) {
                    argSize = getArgumentsAndReturnSizes(desc);
                    i.intVal = argSize;
                }
            }
            code.put12(Opcodes.INVOKEINTERFACE, i.index).put11(argSize >> 2, 0);
        } else {
            code.put12(opcode, i.index);
        }
    }

    public void visitJumpInsn(int opcode, Label label) {
        if (computeMaxs) {
            if (opcode == Opcodes.GOTO) {
                // no stack change, but end of current block (with one new
                // successor)
                if (currentBlock != null) {
                    currentBlock.maxStackSize = maxStackSize;
                    addSuccessor(stackSize, label);
                    currentBlock = null;
                }
            } else if (opcode == Opcodes.JSR) {
                if (currentBlock != null) {
                    addSuccessor(stackSize + 1, label);
                }
            } else {
                // updates current stack size (max stack size unchanged because
                // stack size variation always negative in this case)
                stackSize += SIZE[opcode];
                if (currentBlock != null) {
                    addSuccessor(stackSize, label);
                }
            }
        }
        // adds the instruction to the bytecode of the method
        if (label.resolved && label.position - code.length < Short.MIN_VALUE) {
            /*
             * case of a backward jump with an offset < -32768. In this case we
             * automatically replace GOTO with GOTO_W, JSR with JSR_W and IFxxx
             *  with IFNOTxxx  GOTO_W , where IFNOTxxx is the
             * "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) and where 
             * designates the instruction just after the GOTO_W.
             */
            if (opcode == Opcodes.GOTO) {
                code.putByte(200); // GOTO_W
            } else if (opcode == Opcodes.JSR) {
                code.putByte(201); // JSR_W
            } else {
                code.putByte(opcode <= 166
                        ? ((opcode + 1) ^ 1) - 1
                        : opcode ^ 1);
                code.putShort(8); // jump offset
                code.putByte(200); // GOTO_W
            }
            label.put(code, code.length - 1, true);
        } else {
            /*
             * case of a backward jump with an offset >= -32768, or of a forward
             * jump with, of course, an unknown offset. In these cases we store
             * the offset in 2 bytes (which will be increased in
             * resizeInstructions, if needed).
             */
            code.putByte(opcode);
            label.put(code, code.length - 1, false);
        }
    }

    public void visitLabel(Label label) {
        if (computeMaxs) {
            if (currentBlock != null) {
                // ends current block (with one new successor)
                currentBlock.maxStackSize = maxStackSize;
                addSuccessor(stackSize, label);
            }
            // begins a new current block,
            // resets the relative current and max stack sizes
            currentBlock = label;
            stackSize = 0;
            maxStackSize = 0;
        }
        // resolves previous forward references to label, if any
        resize |= label.resolve(code.length, code.data);
    }

    private void updateCurrentAndMaxStackSizes(int sizeVariation)
    {
        int size = stackSize + sizeVariation;
        if (size > maxStackSize) {
            maxStackSize = size;
        }
        stackSize = size;
        stackSize2 += sizeVariation;
    }

    public void visitLdcInsn(Object cst) {
        Item i = cw.newConstItem(cst);
        if (computeMaxs) {
           int sizeVariation = i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE ? 2 : 1;
           updateCurrentAndMaxStackSizes(sizeVariation);
        }
        // adds the instruction to the bytecode of the method
        int index = i.index;
        if (i.type == ClassWriter.LONG || i.type == ClassWriter.DOUBLE) {
            code.put12(20 /* LDC2_W */, index);
        } else if (index >= 256) {
            code.put12(19 /* LDC_W */, index);
        } else {
            code.put11(Opcodes.LDC, index);
        }
    }

    public void visitIincInsn(int var, int increment) {
        if (computeMaxs) {
            // updates max locals only (no stack change)
            int n = var + 1;
            if (n > maxLocals) {
                maxLocals = n;
            }
        }
        // adds the instruction to the bytecode of the method
        if (var > 255 || increment > 127 || increment < -128) {
            code.putByte(196 /* WIDE */)
                    .put12(Opcodes.IINC, var)
                    .putShort(increment);
        } else {
            code.putByte(Opcodes.IINC).put11(var, increment);
        }
    }

    public void visitTableSwitchInsn(int min, int max, Label dflt, Label[] labels)
    {
        if (computeMaxs) {
            // updates current stack size (max stack size unchanged)
            updateCurrentAndMaxStackSizes(-1);
            // ends current block (with many new successors)
            if (currentBlock != null) {
                currentBlock.maxStackSize = maxStackSize;
                addSuccessor(stackSize, dflt);
                for (int i = 0; i < labels.length; ++i) {
                    addSuccessor(stackSize, labels[i]);
                }
                currentBlock = null;
            }
        }
        // adds the instruction to the bytecode of the method
        int source = code.length;
        code.putByte(Opcodes.TABLESWITCH);
        while (code.length % 4 != 0) {
            code.putByte(0);
        }
        dflt.put(code, source, true);
        code.putInt(min).putInt(max);
        for (int i = 0; i < labels.length; ++i) {
            labels[i].put(code, source, true);
        }
    }

    public void visitLookupSwitchInsn(Label dflt, int[] keys, Label[] labels)
    {
        if (computeMaxs) {
            // updates current stack size (max stack size unchanged)
            updateCurrentAndMaxStackSizes(-1);
            // ends current block (with many new successors)
            if (currentBlock != null) {
                currentBlock.maxStackSize = maxStackSize;
                addSuccessor(stackSize, dflt);
                for (int i = 0; i < labels.length; ++i) {
                    addSuccessor(stackSize, labels[i]);
                }
                currentBlock = null;
            }
        }
        // adds the instruction to the bytecode of the method
        int source = code.length;
        code.putByte(Opcodes.LOOKUPSWITCH);
        while (code.length % 4 != 0) {
            code.putByte(0);
        }
        dflt.put(code, source, true);
        code.putInt(labels.length);
        for (int i = 0; i < labels.length; ++i) {
            code.putInt(keys[i]);
            labels[i].put(code, source, true);
        }
    }

    public void visitMultiANewArrayInsn(String desc, int dims) {
        if (computeMaxs) {
            // updates current stack size (max stack size unchanged because
            // stack size variation always negative or null)
            updateCurrentAndMaxStackSizes(1 - dims);
        }
        // adds the instruction to the bytecode of the method
        code.put12(Opcodes.MULTIANEWARRAY, cw.newClass(desc)).putByte(dims);
    }

    public void visitTryCatchBlock(Label start, Label end, Label handler, String type)
    {
        if (computeMaxs) {
            // pushes handler block onto the stack of blocks to be visited
            if (!handler.pushed) {
                handler.beginStackSize = 1;
                handler.pushed = true;
                handler.next = blockStack;
                blockStack = handler;
            }
        }
        ++catchCount;
        Handler h = new Handler();
        h.start = start;
        h.end = end;
        h.handler = handler;
        h.desc = type;
        h.type = type != null ? cw.newClass(type) : 0;
        if (lastHandler == null) {
            catchTable = h;
        } else {
            lastHandler.next = h;
        }
        lastHandler = h;
    }

    public void visitLocalVariable(
        String name, String desc, String signature, Label start, Label end, int index)
    {
        if (signature != null) {
            if (localVarType == null) {
                localVarType = new ByteVector();
            }
            ++localVarTypeCount;
            localVarType.putShort(start.position)
                    .putShort(end.position - start.position)
                    .putShort(cw.newUTF8(name))
                    .putShort(cw.newUTF8(signature))
                    .putShort(index);
        }
        if (localVar == null) {
            localVar = new ByteVector();
        }
        ++localVarCount;
        localVar.putShort(start.position)
                .putShort(end.position - start.position)
                .putShort(cw.newUTF8(name))
                .putShort(cw.newUTF8(desc))
                .putShort(index);
        
        if(computeMaxs) {
            // updates max locals
            char c = desc.charAt(0);
            int n = index + ( c=='L' || c=='D' ? 2 : 1);
            if (n > maxLocals) {
                maxLocals = n;
            }
        }
    }

    public void visitLineNumber(int line, Label start) {
        if (lineNumber == null) {
            lineNumber = new ByteVector();
        }
        ++lineNumberCount;
        lineNumber.putShort(start.position);
        lineNumber.putShort(line);
    }

    public void visitMaxs(int maxStack, int maxLocals) {
        if (computeMaxs) {
            // true (non relative) max stack size
            int max = 0;
            /*
             * control flow analysis algorithm: while the block stack is not
             * empty, pop a block from this stack, update the max stack size,
             * compute the true (non relative) begin stack size of the
             * successors of this block, and push these successors onto the
             * stack (unless they have already been pushed onto the stack).
             * Note: by hypothesis, the {@link Label#beginStackSize} of the
             * blocks in the block stack are the true (non relative) beginning
             * stack sizes of these blocks.
             */
            Label stack = blockStack;
            while (stack != null) {
                // pops a block from the stack
                Label l = stack;
                stack = stack.next;
                // computes the true (non relative) max stack size of this block
                int start = l.beginStackSize;
                int blockMax = start + l.maxStackSize;
                // updates the global max stack size
                if (blockMax > max) {
                    max = blockMax;
                }
                // analyses the successors of the block
                Edge b = l.successors;
                while (b != null) {
                    l = b.successor;
                    // if this successor has not already been pushed onto the
                    // stack...
                    if (!l.pushed) {
                        // computes the true beginning stack size of this
                        // successor block
                        l.beginStackSize = start + b.stackSize;
                        // pushes this successor onto the stack
                        l.pushed = true;
                        l.next = stack;
                        stack = l;
                    }
                    b = b.next;
                }
            }
            this.maxStack = max;
        } else {
            this.maxStack = maxStack;
            this.maxLocals = maxLocals;
        }
    }

    public void visitEnd() {
    }

    // ------------------------------------------------------------------------
    // Utility methods: control flow analysis algorithm
    // ------------------------------------------------------------------------

    /**
     * Computes the size of the arguments and of the return value of a method.
     * 
     * @param desc the descriptor of a method.
     * @return the size of the arguments of the method (plus one for the
     *         implicit this argument), argSize, and the size of its return
     *         value, retSize, packed into a single int i =
     *         (argSize << 2) | retSize (argSize is therefore equal
     *         to i >> 2, and retSize to i & 0x03).
     */
    private static int getArgumentsAndReturnSizes(String desc) {
        int n = 1;
        int c = 1;
        while (true) {
            char car = desc.charAt(c++);
            if (car == ')') {
                car = desc.charAt(c);
                return n << 2
                        | (car == 'V' ? 0 : (car == 'D' || car == 'J' ? 2 : 1));
            } else if (car == 'L') {
                while (desc.charAt(c++) != ';') {
                }
                n += 1;
            } else if (car == '[') {
                while ((car = desc.charAt(c)) == '[') {
                    ++c;
                }
                if (car == 'D' || car == 'J') {
                    n -= 1;
                }
            } else if (car == 'D' || car == 'J') {
                n += 2;
            } else {
                n += 1;
            }
        }
    }

    /**
     * Adds a successor to the {@link #currentBlock currentBlock} block.
     * 
     * @param stackSize the current (relative) stack size in the current block.
     * @param successor the successor block to be added to the current block.
     */
    private void addSuccessor(int stackSize, Label successor) {
        Edge b = new Edge();
        // initializes the previous Edge object...
        b.stackSize = stackSize;
        b.successor = successor;
        // ...and adds it to the successor list of the currentBlock block
        b.next = currentBlock.successors;
        currentBlock.successors = b;
    }

    // ------------------------------------------------------------------------
    // Utility methods: dump bytecode array
    // ------------------------------------------------------------------------

    /**
     * Returns the size of the bytecode of this method.
     * 
     * @return the size of the bytecode of this method.
     */
    int getSize() {
        if (classReaderOffset != 0) {
            return 6 + classReaderLength;
        }
        if (resize) {
            // replaces the temporary jump opcodes introduced by Label.resolve.
            resizeInstructions(new int[0], new int[0], 0);
        }
        int size = 8;
        if (code.length > 0) {
            cw.newUTF8("Code");
            size += 18 + code.length + 8 * catchCount;
            if (localVar != null) {
                cw.newUTF8("LocalVariableTable");
                size += 8 + localVar.length;
            }
            if (localVarType != null) {
                cw.newUTF8("LocalVariableTypeTable");
                size += 8 + localVarType.length;
            }
            if (lineNumber != null) {
                cw.newUTF8("LineNumberTable");
                size += 8 + lineNumber.length;
            }
            if (cattrs != null) {
                size += cattrs.getSize(cw);
            }
        }
        if (exceptionCount > 0) {
            cw.newUTF8("Exceptions");
            size += 8 + 2 * exceptionCount;
        }
        if ((access & Opcodes.ACC_SYNTHETIC) != 0
                && (cw.version & 0xffff) < Opcodes.V1_5)
        {
            cw.newUTF8("Synthetic");
            size += 6;
        }
        if ((access & Opcodes.ACC_DEPRECATED) != 0) {
            cw.newUTF8("Deprecated");
            size += 6;
        }
        if (cw.version == Opcodes.V1_4) {
            if ((access & Opcodes.ACC_VARARGS) != 0) {
                cw.newUTF8("Varargs");
                size += 6;
            }
            if ((access & Opcodes.ACC_BRIDGE) != 0) {
                cw.newUTF8("Bridge");
                size += 6;
            }
        }
        if (signature != null) {
            cw.newUTF8("Signature");
            cw.newUTF8(signature);
            size += 8;
        }
        if (annd != null) {
            cw.newUTF8("AnnotationDefault");
            size += 6 + annd.length;
        }
        if (anns != null) {
            cw.newUTF8("RuntimeVisibleAnnotations");
            size += 8 + anns.getSize();
        }
        if (ianns != null) {
            cw.newUTF8("RuntimeInvisibleAnnotations");
            size += 8 + ianns.getSize();
        }
        if (panns != null) {
            cw.newUTF8("RuntimeVisibleParameterAnnotations");
            size += 7 + 2 * panns.length;
            for (int i = panns.length - 1; i >= 0; --i) {
                size += panns[i] == null ? 0 : panns[i].getSize();
            }
        }
        if (ipanns != null) {
            cw.newUTF8("RuntimeInvisibleParameterAnnotations");
            size += 7 + 2 * ipanns.length;
            for (int i = ipanns.length - 1; i >= 0; --i) {
                size += ipanns[i] == null ? 0 : ipanns[i].getSize();
            }
        }
        if (attrs != null) {
            size += attrs.getSize(cw);
        }
        return size;
    }

    /**
     * Puts the bytecode of this method in the given byte vector.
     * 
     * @param out the byte vector into which the bytecode of this method must be
     *        copied.
     */
    void put(ByteVector out) {
        out.putShort(access).putShort(name).putShort(desc);
        if (classReaderOffset != 0) {
            out.putByteArray(cw.cr.b, classReaderOffset, classReaderLength);
            return;
        }
        int attributeCount = 0;
        if (code.length > 0) {
            ++attributeCount;
        }
        if (exceptionCount > 0) {
            ++attributeCount;
        }
        if ((access & Opcodes.ACC_SYNTHETIC) != 0
                && (cw.version & 0xffff) < Opcodes.V1_5)
        {
            ++attributeCount;
        }
        if ((access & Opcodes.ACC_DEPRECATED) != 0) {
            ++attributeCount;
        }
        if (cw.version == Opcodes.V1_4) {
            if ((access & Opcodes.ACC_VARARGS) != 0) {
                ++attributeCount;
            }
            if ((access & Opcodes.ACC_BRIDGE) != 0) {
                ++attributeCount;
            }
        }
        if (signature != null) {
            ++attributeCount;
        }
        if (annd != null) {
            ++attributeCount;
        }
        if (anns != null) {
            ++attributeCount;
        }
        if (ianns != null) {
            ++attributeCount;
        }
        if (panns != null) {
            ++attributeCount;
        }
        if (ipanns != null) {
            ++attributeCount;
        }
        if (attrs != null) {
            attributeCount += attrs.getCount();
        }
        out.putShort(attributeCount);
        if (code.length > 0) {
            int size = 12 + code.length + 8 * catchCount;
            if (localVar != null) {
                size += 8 + localVar.length;
            }
            if (localVarType != null) {
                size += 8 + localVarType.length;
            }
            if (lineNumber != null) {
                size += 8 + lineNumber.length;
            }
            if (cattrs != null) {
                size += cattrs.getSize(cw);
            }
            out.putShort(cw.newUTF8("Code")).putInt(size);
            out.putShort(maxStack).putShort(maxLocals);
            out.putInt(code.length).putByteArray(code.data, 0, code.length);
            out.putShort(catchCount);
            if (catchCount > 0) {
                Handler h = catchTable;
                while (h != null) {
                    out.putShort(h.start.position)
                            .putShort(h.end.position)
                            .putShort(h.handler.position)
                            .putShort(h.type);
                    h = h.next;
                }
            }
            attributeCount = 0;
            if (localVar != null) {
                ++attributeCount;
            }
            if (localVarType != null) {
                ++attributeCount;
            }
            if (lineNumber != null) {
                ++attributeCount;
            }
            if (cattrs != null) {
                attributeCount += cattrs.getCount();
            }
            out.putShort(attributeCount);
            if (localVar != null) {
                out.putShort(cw.newUTF8("LocalVariableTable"));
                out.putInt(localVar.length + 2).putShort(localVarCount);
                out.putByteArray(localVar.data, 0, localVar.length);
            }
            if (localVarType != null) {
                out.putShort(cw.newUTF8("LocalVariableTypeTable"));
                out.putInt(localVarType.length + 2).putShort(localVarTypeCount);
                out.putByteArray(localVarType.data, 0, localVarType.length);
            }
            if (lineNumber != null) {
                out.putShort(cw.newUTF8("LineNumberTable"));
                out.putInt(lineNumber.length + 2).putShort(lineNumberCount);
                out.putByteArray(lineNumber.data, 0, lineNumber.length);
            }
            if (cattrs != null) {
                cattrs.put(cw, out);
            }
        }
        if (exceptionCount > 0) {
            out.putShort(cw.newUTF8("Exceptions"))
                    .putInt(2 * exceptionCount + 2);
            out.putShort(exceptionCount);
            for (int i = 0; i < exceptionCount; ++i) {
                out.putShort(exceptions[i]);
            }
        }
        if ((access & Opcodes.ACC_SYNTHETIC) != 0
                && (cw.version & 0xffff) < Opcodes.V1_5)
        {
            out.putShort(cw.newUTF8("Synthetic")).putInt(0);
        }
        if ((access & Opcodes.ACC_DEPRECATED) != 0) {
            out.putShort(cw.newUTF8("Deprecated")).putInt(0);
        }
        if (cw.version == Opcodes.V1_4) {
            if ((access & Opcodes.ACC_VARARGS) != 0) {
                out.putShort(cw.newUTF8("Varargs")).putInt(0);
            }
            if ((access & Opcodes.ACC_BRIDGE) != 0) {
                out.putShort(cw.newUTF8("Bridge")).putInt(0);
            }
        }
        if (signature != null) {
            out.putShort(cw.newUTF8("Signature"))
                    .putInt(2)
                    .putShort(cw.newUTF8(signature));
        }
        if (annd != null) {
            out.putShort(cw.newUTF8("AnnotationDefault"));
            out.putInt(annd.length);
            out.putByteArray(annd.data, 0, annd.length);
        }
        if (anns != null) {
            out.putShort(cw.newUTF8("RuntimeVisibleAnnotations"));
            anns.put(out);
        }
        if (ianns != null) {
            out.putShort(cw.newUTF8("RuntimeInvisibleAnnotations"));
            ianns.put(out);
        }
        if (panns != null) {
            out.putShort(cw.newUTF8("RuntimeVisibleParameterAnnotations"));
            AnnotationWriter.put(panns, out);
        }
        if (ipanns != null) {
            out.putShort(cw.newUTF8("RuntimeInvisibleParameterAnnotations"));
            AnnotationWriter.put(ipanns, out);
        }
        if (attrs != null) {
            attrs.put(cw, out);
        }
    }

    // ------------------------------------------------------------------------
    // Utility methods: instruction resizing (used to handle GOTO_W and JSR_W)
    // ------------------------------------------------------------------------

    /**
     * Resizes the designated instructions, while keeping jump offsets and
     * instruction addresses consistent. This may require to resize other
     * existing instructions, or even to introduce new instructions: for
     * example, increasing the size of an instruction by 2 at the middle of a
     * method can increases the offset of an IFEQ instruction from 32766 to
     * 32768, in which case IFEQ 32766 must be replaced with IFNEQ 8 GOTO_W
     * 32765. This, in turn, may require to increase the size of another jump
     * instruction, and so on... All these operations are handled automatically
     * by this method. 

This method must be called after all the method * that is being built has been visited. In particular, the * {@link Label Label} objects used to construct the method are no longer * valid after this method has been called. * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its last * byte, plus one (or, in other words, by the index of the first * byte of the next instruction). * @param sizes the number of bytes to be added to the above * instructions. More precisely, for each i < len, * sizes[i] bytes will be added at the end of the * instruction designated by indexes[i] or, if * sizes[i] is negative, the last |sizes[i]| * bytes of the instruction will be removed (the instruction size * must not become negative or null). The gaps introduced by * this method must be filled in "manually" in {@link #code code} * method. * @param len the number of instruction to be resized. Must be smaller than * or equal to indexes.length and sizes.length. * @return the indexes array, which now contains the new * positions of the resized instructions (designated as above). */ private int[] resizeInstructions(int[] indexes, int[] sizes, int len) { byte[] b = code.data; // bytecode of the method int u, v, label; // indexes in b int i, j; // loop indexes /* * 1st step: As explained above, resizing an instruction may require to * resize another one, which may require to resize yet another one, and * so on. The first step of the algorithm consists in finding all the * instructions that need to be resized, without modifying the code. * This is done by the following "fix point" algorithm: * * Parse the code to find the jump instructions whose offset will need * more than 2 bytes to be stored (the future offset is computed from * the current offset and from the number of bytes that will be inserted * or removed between the source and target instructions). For each such * instruction, adds an entry in (a copy of) the indexes and sizes * arrays (if this has not already been done in a previous iteration!). * * If at least one entry has been added during the previous step, go * back to the beginning, otherwise stop. * * In fact the real algorithm is complicated by the fact that the size * of TABLESWITCH and LOOKUPSWITCH instructions depends on their * position in the bytecode (because of padding). In order to ensure the * convergence of the algorithm, the number of bytes to be added or * removed from these instructions is over estimated during the previous * loop, and computed exactly only after the loop is finished (this * requires another pass to parse the bytecode of the method). */ int[] allIndexes = new int[len]; // copy of indexes int[] allSizes = new int[len]; // copy of sizes boolean[] resize; // instructions to be resized int newOffset; // future offset of a jump instruction System.arraycopy(indexes, 0, allIndexes, 0, len); System.arraycopy(sizes, 0, allSizes, 0, len); resize = new boolean[code.length]; // 3 = loop again, 2 = loop ended, 1 = last pass, 0 = done int state = 3; do { if (state == 3) { state = 2; } u = 0; while (u < b.length) { int opcode = b[u] & 0xFF; // opcode of current instruction int insert = 0; // bytes to be added after this instruction switch (ClassWriter.TYPE[opcode]) { case ClassWriter.NOARG_INSN: case ClassWriter.IMPLVAR_INSN: u += 1; break; case ClassWriter.LABEL_INSN: if (opcode > 201) { // converts temporary opcodes 202 to 217, 218 and // 219 to IFEQ ... JSR (inclusive), IFNULL and // IFNONNULL opcode = opcode < 218 ? opcode - 49 : opcode - 20; label = u + readUnsignedShort(b, u + 1); } else { label = u + readShort(b, u + 1); } newOffset = getNewOffset(allIndexes, allSizes, u, label); if (newOffset < Short.MIN_VALUE || newOffset > Short.MAX_VALUE) { if (!resize[u]) { if (opcode == Opcodes.GOTO || opcode == Opcodes.JSR) { // two additional bytes will be required to // replace this GOTO or JSR instruction with // a GOTO_W or a JSR_W insert = 2; } else { // five additional bytes will be required to // replace this IFxxx instruction with // IFNOTxxx GOTO_W , where IFNOTxxx // is the "opposite" opcode of IFxxx (i.e., // IFNE for IFEQ) and where designates // the instruction just after the GOTO_W. insert = 5; } resize[u] = true; } } u += 3; break; case ClassWriter.LABELW_INSN: u += 5; break; case ClassWriter.TABL_INSN: if (state == 1) { // true number of bytes to be added (or removed) // from this instruction = (future number of padding // bytes - current number of padding byte) - // previously over estimated variation = // = ((3 - newOffset%4) - (3 - u%4)) - u%4 // = (-newOffset%4 + u%4) - u%4 // = -(newOffset & 3) newOffset = getNewOffset(allIndexes, allSizes, 0, u); insert = -(newOffset & 3); } else if (!resize[u]) { // over estimation of the number of bytes to be // added to this instruction = 3 - current number // of padding bytes = 3 - (3 - u%4) = u%4 = u & 3 insert = u & 3; resize[u] = true; } // skips instruction u = u + 4 - (u & 3); u += 4 * (readInt(b, u + 8) - readInt(b, u + 4) + 1) + 12; break; case ClassWriter.LOOK_INSN: if (state == 1) { // like TABL_INSN newOffset = getNewOffset(allIndexes, allSizes, 0, u); insert = -(newOffset & 3); } else if (!resize[u]) { // like TABL_INSN insert = u & 3; resize[u] = true; } // skips instruction u = u + 4 - (u & 3); u += 8 * readInt(b, u + 4) + 8; break; case ClassWriter.WIDE_INSN: opcode = b[u + 1] & 0xFF; if (opcode == Opcodes.IINC) { u += 6; } else { u += 4; } break; case ClassWriter.VAR_INSN: case ClassWriter.SBYTE_INSN: case ClassWriter.LDC_INSN: u += 2; break; case ClassWriter.SHORT_INSN: case ClassWriter.LDCW_INSN: case ClassWriter.FIELDORMETH_INSN: case ClassWriter.TYPE_INSN: case ClassWriter.IINC_INSN: u += 3; break; case ClassWriter.ITFMETH_INSN: u += 5; break; // case ClassWriter.MANA_INSN: default: u += 4; break; } if (insert != 0) { // adds a new (u, insert) entry in the allIndexes and // allSizes arrays int[] newIndexes = new int[allIndexes.length + 1]; int[] newSizes = new int[allSizes.length + 1]; System.arraycopy(allIndexes, 0, newIndexes, 0, allIndexes.length); System.arraycopy(allSizes, 0, newSizes, 0, allSizes.length); newIndexes[allIndexes.length] = u; newSizes[allSizes.length] = insert; allIndexes = newIndexes; allSizes = newSizes; if (insert > 0) { state = 3; } } } if (state < 3) { --state; } } while (state != 0); // 2nd step: // copies the bytecode of the method into a new bytevector, updates the // offsets, and inserts (or removes) bytes as requested. ByteVector newCode = new ByteVector(code.length); u = 0; while (u < code.length) { for (i = allIndexes.length - 1; i >= 0; --i) { if (allIndexes[i] == u) { if (i < len) { if (sizes[i] > 0) { newCode.putByteArray(null, 0, sizes[i]); } else { newCode.length += sizes[i]; } indexes[i] = newCode.length; } } } int opcode = b[u] & 0xFF; switch (ClassWriter.TYPE[opcode]) { case ClassWriter.NOARG_INSN: case ClassWriter.IMPLVAR_INSN: newCode.putByte(opcode); u += 1; break; case ClassWriter.LABEL_INSN: if (opcode > 201) { // changes temporary opcodes 202 to 217 (inclusive), 218 // and 219 to IFEQ ... JSR (inclusive), IFNULL and // IFNONNULL opcode = opcode < 218 ? opcode - 49 : opcode - 20; label = u + readUnsignedShort(b, u + 1); } else { label = u + readShort(b, u + 1); } newOffset = getNewOffset(allIndexes, allSizes, u, label); if (resize[u]) { // replaces GOTO with GOTO_W, JSR with JSR_W and IFxxx // with IFNOTxxx GOTO_W , where IFNOTxxx is // the "opposite" opcode of IFxxx (i.e., IFNE for IFEQ) // and where designates the instruction just after // the GOTO_W. if (opcode == Opcodes.GOTO) { newCode.putByte(200); // GOTO_W } else if (opcode == Opcodes.JSR) { newCode.putByte(201); // JSR_W } else { newCode.putByte(opcode <= 166 ? ((opcode + 1) ^ 1) - 1 : opcode ^ 1); newCode.putShort(8); // jump offset newCode.putByte(200); // GOTO_W // newOffset now computed from start of GOTO_W newOffset -= 3; } newCode.putInt(newOffset); } else { newCode.putByte(opcode); newCode.putShort(newOffset); } u += 3; break; case ClassWriter.LABELW_INSN: label = u + readInt(b, u + 1); newOffset = getNewOffset(allIndexes, allSizes, u, label); newCode.putByte(opcode); newCode.putInt(newOffset); u += 5; break; case ClassWriter.TABL_INSN: // skips 0 to 3 padding bytes v = u; u = u + 4 - (v & 3); // reads and copies instruction newCode.putByte(Opcodes.TABLESWITCH); while (newCode.length % 4 != 0) { newCode.putByte(0); } label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); j = readInt(b, u); u += 4; newCode.putInt(j); j = readInt(b, u) - j + 1; u += 4; newCode.putInt(readInt(b, u - 4)); for (; j > 0; --j) { label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); } break; case ClassWriter.LOOK_INSN: // skips 0 to 3 padding bytes v = u; u = u + 4 - (v & 3); // reads and copies instruction newCode.putByte(Opcodes.LOOKUPSWITCH); while (newCode.length % 4 != 0) { newCode.putByte(0); } label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); j = readInt(b, u); u += 4; newCode.putInt(j); for (; j > 0; --j) { newCode.putInt(readInt(b, u)); u += 4; label = v + readInt(b, u); u += 4; newOffset = getNewOffset(allIndexes, allSizes, v, label); newCode.putInt(newOffset); } break; case ClassWriter.WIDE_INSN: opcode = b[u + 1] & 0xFF; if (opcode == Opcodes.IINC) { newCode.putByteArray(b, u, 6); u += 6; } else { newCode.putByteArray(b, u, 4); u += 4; } break; case ClassWriter.VAR_INSN: case ClassWriter.SBYTE_INSN: case ClassWriter.LDC_INSN: newCode.putByteArray(b, u, 2); u += 2; break; case ClassWriter.SHORT_INSN: case ClassWriter.LDCW_INSN: case ClassWriter.FIELDORMETH_INSN: case ClassWriter.TYPE_INSN: case ClassWriter.IINC_INSN: newCode.putByteArray(b, u, 3); u += 3; break; case ClassWriter.ITFMETH_INSN: newCode.putByteArray(b, u, 5); u += 5; break; // case MANA_INSN: default: newCode.putByteArray(b, u, 4); u += 4; break; } } // updates the exception handler block labels Handler h = catchTable; while (h != null) { getNewOffset(allIndexes, allSizes, h.start); getNewOffset(allIndexes, allSizes, h.end); getNewOffset(allIndexes, allSizes, h.handler); h = h.next; } for (i = 0; i < 2; ++i) { ByteVector bv = i == 0 ? localVar : localVarType; if (bv != null) { b = bv.data; u = 0; while (u < bv.length) { label = readUnsignedShort(b, u); newOffset = getNewOffset(allIndexes, allSizes, 0, label); writeShort(b, u, newOffset); label += readUnsignedShort(b, u + 2); newOffset = getNewOffset(allIndexes, allSizes, 0, label) - newOffset; writeShort(b, u + 2, newOffset); u += 10; } } } if (lineNumber != null) { b = lineNumber.data; u = 0; while (u < lineNumber.length) { writeShort(b, u, getNewOffset(allIndexes, allSizes, 0, readUnsignedShort(b, u))); u += 4; } } // updates the labels of the other attributes while (cattrs != null) { Label[] labels = cattrs.getLabels(); if (labels != null) { for (i = labels.length - 1; i >= 0; --i) { if (!labels[i].resized) { labels[i].position = getNewOffset(allIndexes, allSizes, 0, labels[i].position); labels[i].resized = true; } } } } // replaces old bytecodes with new ones code = newCode; // returns the positions of the resized instructions return indexes; } /** * Reads an unsigned short value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static int readUnsignedShort(byte[] b, int index) { return ((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF); } /** * Reads a signed short value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static short readShort(byte[] b, int index) { return (short) (((b[index] & 0xFF) << 8) | (b[index + 1] & 0xFF)); } /** * Reads a signed int value in the given byte array. * * @param b a byte array. * @param index the start index of the value to be read. * @return the read value. */ static int readInt(byte[] b, int index) { return ((b[index] & 0xFF) << 24) | ((b[index + 1] & 0xFF) << 16) | ((b[index + 2] & 0xFF) << 8) | (b[index + 3] & 0xFF); } /** * Writes a short value in the given byte array. * * @param b a byte array. * @param index where the first byte of the short value must be written. * @param s the value to be written in the given byte array. */ static void writeShort(byte[] b, int index, int s) { b[index] = (byte) (s >>> 8); b[index + 1] = (byte) s; } /** * Computes the future value of a bytecode offset.

Note: it is possible * to have several entries for the same instruction in the indexes * and sizes: two entries (index=a,size=b) and (index=a,size=b') * are equivalent to a single entry (index=a,size=b+b'). * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its last * byte, plus one (or, in other words, by the index of the first * byte of the next instruction). * @param sizes the number of bytes to be added to the above * instructions. More precisely, for each i < len, * sizes[i] bytes will be added at the end of the * instruction designated by indexes[i] or, if * sizes[i] is negative, the last |sizes[i]| * bytes of the instruction will be removed (the instruction size * must not become negative or null). * @param begin index of the first byte of the source instruction. * @param end index of the first byte of the target instruction. * @return the future value of the given bytecode offset. */ static int getNewOffset(int[] indexes, int[] sizes, int begin, int end) { int offset = end - begin; for (int i = 0; i < indexes.length; ++i) { if (begin < indexes[i] && indexes[i] <= end) { // forward jump offset += sizes[i]; } else if (end < indexes[i] && indexes[i] <= begin) { // backward jump offset -= sizes[i]; } } return offset; } /** * Updates the offset of the given label. * * @param indexes current positions of the instructions to be resized. Each * instruction must be designated by the index of its last * byte, plus one (or, in other words, by the index of the first * byte of the next instruction). * @param sizes the number of bytes to be added to the above * instructions. More precisely, for each i < len, * sizes[i] bytes will be added at the end of the * instruction designated by indexes[i] or, if * sizes[i] is negative, the last |sizes[i]| * bytes of the instruction will be removed (the instruction size * must not become negative or null). * @param label the label whose offset must be updated. */ static void getNewOffset(int[] indexes, int[] sizes, Label label) { if (!label.resized) { label.position = getNewOffset(indexes, sizes, 0, label.position); label.resized = true; } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy