no.uib.cipr.matrix.distributed.TwoLevelPreconditioner Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mtj Show documentation
Show all versions of mtj Show documentation
A comprehensive collection of matrix data structures, linear solvers, least squares methods,
eigenvalue, and singular value decompositions.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.distributed;
import java.util.Arrays;
import no.uib.cipr.matrix.DenseLU;
import no.uib.cipr.matrix.DenseMatrix;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.MatrixEntry;
import no.uib.cipr.matrix.Vector;
import no.uib.cipr.matrix.VectorEntry;
import no.uib.cipr.matrix.sparse.Preconditioner;
/**
* Two level preconditioner. Uses a block preconditioner as a subdomain solver,
* and algebraically constructs a coarse grid correcion operator
*
* @deprecated the no.uib.cipr.matrix.distributed
package has been deprecated because
* of a number of hard to fix concurrency bugs. It is distributed only for backwards compatibility,
* but is not recommended. The utility of this package is questionable, as it does not allow
* distribution of computation between JVMs or across a network. For many people, distributed
* computing of multiple matrices can be achieved at a user-level through the
* JPPF Framework.
* Users who need to deal with few very large matrices may wish to implement their own storage classes
* and solvers using JPPF, but this will not be supported directly in matrix-toolkits-java.
*/
@Deprecated
public class TwoLevelPreconditioner extends BlockDiagonalPreconditioner {
private final static int root = 0;
private final DistMatrix A;
private final Communicator comm;
private final int rank, size;
private final int[] indexToRank;
private final DistVector z, r;
private final DenseMatrix A0;
private final DenseVector b0;
private final DenseLU lu;
private final double[] Ai;
private final double[][] Ai0;
private final boolean row;
private final double[][] zi0;
public TwoLevelPreconditioner(Preconditioner prec, DistRowMatrix A,
DistVector z) {
super(prec);
this.A = A;
this.z = z;
this.r = z.copy();
row = true;
indexToRank = createIndexToRank(A.numColumns(), A.getColumnOwnerships());
this.comm = A.getCommunicator();
rank = comm.rank();
size = comm.size();
A0 = new DenseMatrix(size, size);
b0 = new DenseVector(size);
lu = new DenseLU(size, size);
Ai = new double[size];
if (rank == root) {
Ai0 = new double[size][size];
zi0 = new double[size][1];
} else {
Ai0 = null;
zi0 = null;
}
}
public TwoLevelPreconditioner(Preconditioner prec, DistColMatrix A,
DistVector z) {
super(prec);
this.A = A;
this.z = z;
this.r = z.copy();
row = false;
indexToRank = createIndexToRank(A.numColumns(), A.getColumnOwnerships());
this.comm = A.getCommunicator();
rank = comm.rank();
size = comm.size();
A0 = new DenseMatrix(size, size);
b0 = new DenseVector(size);
lu = new DenseLU(size, size);
Ai = new double[size];
if (rank == root) {
Ai0 = new double[size][size];
zi0 = new double[size][1];
} else {
Ai0 = null;
zi0 = null;
}
}
/**
* Creates a mapping from a row/column index to the associated rank
*
* @param size
* Number of rows/columns
* @param n
* Row/column ownerships
*/
private int[] createIndexToRank(int size, int[] n) {
int[] indexToRank = new int[size];
for (int i = 0; i < n.length - 1; ++i)
for (int j = n[i]; j < n[i + 1]; ++j)
indexToRank[j] = i;
return indexToRank;
}
@Override
public Vector apply(Vector b, Vector x) {
if (!(b instanceof DistVector) || !(x instanceof DistVector))
throw new IllegalArgumentException("Vectors must be DistVectors");
boolean transpose = false;
return apply(b, x, transpose);
}
@Override
public Vector transApply(Vector b, Vector x) {
if (!(b instanceof DistVector) || !(x instanceof DistVector))
throw new IllegalArgumentException("Vectors must be DistVectors");
boolean transpose = true;
return apply(b, x, transpose);
}
private Vector apply(Vector b, Vector x, boolean transpose) {
// Calculate R * (b - A*x)
calculateCoarseResidual(b, x, transpose);
// Calculate A0 \ R * (b - A*x)
if (rank == root)
solveCoarseSystem(transpose);
// Update x += R^T A0 \ R * (b - A*x)
updateWithCoarseCorrection(x);
return applyBlockPreconditioner(b, x, transpose);
}
/**
* Calculates the residual, and projects it onto the coarse grid
*/
private void calculateCoarseResidual(Vector b, Vector x, boolean transpose) {
// z = b - A*x
if (transpose)
A.transMultAdd(-1, x, z.set(b));
else
A.multAdd(-1, x, z.set(b));
// Piecewise constant projection R * (b - A*x)
double zi = 0;
for (VectorEntry e : z.getLocal())
zi += e.get();
// Gather the results on rank zero
double[] zij = new double[] { zi };
comm.gather(zij, zi0, root);
}
/**
* Solves the coarse system. Only the root thread should call
*/
private void solveCoarseSystem(boolean transpose) {
for (int i = 0; i < size; ++i)
b0.set(i, zi0[i][0]);
if (transpose)
lu.transSolve(new DenseMatrix(b0, false));
else
lu.solve(new DenseMatrix(b0, false));
double[] data = b0.getData();
for (int i = 0; i < size; ++i)
zi0[i][0] = data[i];
}
/**
* Updates the global solution with the coarse correction
*/
private void updateWithCoarseCorrection(Vector x) {
DistVector xd = (DistVector) x;
double[] zij = new double[1];
comm.scatter(zi0, zij, root);
for (VectorEntry e : xd.getLocal())
e.set(e.get() + zij[0]);
}
/**
* Applies the local block preconditioner
*/
private Vector applyBlockPreconditioner(Vector b, Vector x,
boolean transpose) {
// Recalculate residual
if (transpose)
A.transMultAdd(-1, x, z.set(b));
else
A.multAdd(-1, x, z.set(b));
// Apply block preconditioner on the residual
r.set(b);
if (transpose)
super.transApply(z, r);
else
super.apply(z, r);
return x.add(r);
}
@Override
public void setMatrix(Matrix A) {
if (!(A instanceof DistMatrix))
throw new IllegalArgumentException(
"A is not a DistRowMatrix or a DistColMatrix");
Matrix Ad = this.A.getBlock();
Matrix Ao = this.A.getOff();
super.setMatrix(A);
Arrays.fill(Ai, 0);
for (MatrixEntry e : Ad)
Ai[rank] += e.get();
if (row) {
for (MatrixEntry e : Ao)
Ai[indexToRank[e.column()]] += e.get();
comm.gather(Ai, Ai0, root);
if (rank == root)
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j)
A0.set(i, j, Ai0[i][j]);
} else {
for (MatrixEntry e : Ao)
Ai[indexToRank[e.row()]] += e.get();
comm.gather(Ai, Ai0, root);
if (rank == root)
for (int i = 0; i < size; ++i)
for (int j = 0; j < size; ++j)
A0.set(i, j, Ai0[j][i]);
}
if (rank == root)
lu.factor(A0);
}
}