All Downloads are FREE. Search and download functionalities are using the official Maven repository.

no.uib.cipr.matrix.AbstractMatrix Maven / Gradle / Ivy

Go to download

A comprehensive collection of matrix data structures, linear solvers, least squares methods, eigenvalue, and singular value decompositions.

There is a newer version: 1.0.4
Show newest version
/*
 * Copyright (C) 2003-2006 Bjørn-Ove Heimsund
 * 
 * This file is part of MTJ.
 * 
 * This library is free software; you can redistribute it and/or modify it
 * under the terms of the GNU Lesser General Public License as published by the
 * Free Software Foundation; either version 2.1 of the License, or (at your
 * option) any later version.
 * 
 * This library is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
 * for more details.
 * 
 * You should have received a copy of the GNU Lesser General Public License
 * along with this library; if not, write to the Free Software Foundation,
 * Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
 */

package no.uib.cipr.matrix;

import java.util.Formatter;
import java.util.Iterator;

/**
 * Partial implementation of Matrix. The following methods throw
 * UnsupportedOperationException, and should be overridden by a
 * subclass:
 * 
    *
  • get(int,int)
  • *
  • set(int,int,double)
  • *
  • copy
  • *
  • All the direct solution methods
  • *
*

* For the rest of the methods, simple default implementations using a matrix * iterator has been provided. There are some kernel operations which the * simpler operations forward to, for instance, mult(Matrix,Matrix) * forwards to multAdd(double,Matrix,Matrix). Subclasses can thus * focus on overriding the kernel operations, which are: *

    *
  • multAdd(double,Vector,Vector) and * transMultAdd(double,Vector,Vector).
  • *
  • rank1(double,Vector,Vector) and * rank1(double,Vector,Vector).
  • *
  • multAdd(double,Matrix,Matrix), * transAmultAdd(double,Matrix,Matrix), * transBmultAdd(double,Matrix,Matrix), and * transABmultAdd(double,Matrix,Matrix).
  • *
  • scale(double).
  • *
  • set(double,Matrix) and add(double,Matrix).
  • *
  • transpose and transpose(Matrix).
  • *
  • All the norms.
  • *
*

* Finally, a default iterator is provided by this class, which works by calling * the get function. A tailored replacement should be used by * subclasses. */ public abstract class AbstractMatrix implements Matrix { /** * Number of rows */ protected int numRows; /** * Number of columns */ protected int numColumns; /** * Constructor for AbstractMatrix */ protected AbstractMatrix(int numRows, int numColumns) { if (numRows < 0 || numColumns < 0) throw new IndexOutOfBoundsException( "Matrix size cannot be negative"); this.numRows = numRows; this.numColumns = numColumns; } /** * Constructor for AbstractMatrix, same size as A. The invoking constructor * should set this matrix equal the argument matrix */ protected AbstractMatrix(Matrix A) { this(A.numRows(), A.numColumns()); } public int numRows() { return numRows; } public int numColumns() { return numColumns; } public boolean isSquare() { return numRows == numColumns; } public void set(int row, int column, double value) { throw new UnsupportedOperationException(); } public void add(int row, int column, double value) { set(row, column, value + get(row, column)); } public double get(int row, int column) { throw new UnsupportedOperationException(); } /** * Checks the passed row and column indices */ protected void check(int row, int column) { if (row < 0) throw new IndexOutOfBoundsException("row index is negative (" + row + ")"); if (column < 0) throw new IndexOutOfBoundsException("column index is negative (" + column + ")"); if (row >= numRows) throw new IndexOutOfBoundsException("row index >= numRows (" + row + " >= " + numRows + ")"); if (column >= numColumns) throw new IndexOutOfBoundsException("column index >= numColumns (" + column + " >= " + numColumns + ")"); } public Matrix copy() { throw new UnsupportedOperationException(); } public Matrix zero() { for (MatrixEntry e : this) e.set(0); return this; } public Vector mult(Vector x, Vector y) { return mult(1, x, y); } public Vector mult(double alpha, Vector x, Vector y) { return multAdd(alpha, x, y.zero()); } public Vector multAdd(Vector x, Vector y) { return multAdd(1, x, y); } public Vector multAdd(double alpha, Vector x, Vector y) { checkMultAdd(x, y); if (alpha != 0) for (MatrixEntry e : this) y.add(e.row(), alpha * e.get() * x.get(e.column())); return y; } /** * Checks the arguments to mult and multAdd */ protected void checkMultAdd(Vector x, Vector y) { if (numColumns != x.size()) throw new IndexOutOfBoundsException("A.numColumns != x.size (" + numColumns + " != " + x.size() + ")"); if (numRows != y.size()) throw new IndexOutOfBoundsException("A.numRows != y.size (" + numRows + " != " + y.size() + ")"); } public Vector transMult(Vector x, Vector y) { return transMult(1, x, y); } public Vector transMult(double alpha, Vector x, Vector y) { return transMultAdd(alpha, x, y.zero()); } public Vector transMultAdd(Vector x, Vector y) { return transMultAdd(1, x, y); } public Vector transMultAdd(double alpha, Vector x, Vector y) { checkTransMultAdd(x, y); if (alpha != 0) for (MatrixEntry e : this) y.add(e.column(), alpha * e.get() * x.get(e.row())); return y; } /** * Checks the arguments to transMult and * transMultAdd */ protected void checkTransMultAdd(Vector x, Vector y) { if (numRows != x.size()) throw new IndexOutOfBoundsException("A.numRows != x.size (" + numRows + " != " + x.size() + ")"); if (numColumns != y.size()) throw new IndexOutOfBoundsException("A.numColumns != y.size (" + numColumns + " != " + y.size() + ")"); } public Vector solve(Vector b, Vector x) { throw new UnsupportedOperationException(); } public Vector transSolve(Vector b, Vector x) { throw new UnsupportedOperationException(); } /** * Checks that a matrix inversion is legal for the given arguments. This is * for the square case, not for least-squares problems */ protected void checkSolve(Vector b, Vector x) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (numRows != b.size()) throw new IndexOutOfBoundsException("numRows != b.size (" + numRows + " != " + b.size() + ")"); if (numColumns != x.size()) throw new IndexOutOfBoundsException("numColumns != x.size (" + numColumns + " != " + x.size() + ")"); } public Matrix rank1(Vector x) { return rank1(1, x); } public Matrix rank1(double alpha, Vector x) { return rank1(alpha, x, x); } public Matrix rank1(Vector x, Vector y) { return rank1(1, x, y); } public Matrix rank1(double alpha, Vector x, Vector y) { checkRank1(x, y); if (alpha == 0) return this; for (VectorEntry ei : x) if (ei.get() != 0) for (VectorEntry ej : y) if (ej.get() != 0) add(ei.index(), ej.index(), alpha * ei.get() * ej.get()); return this; } /** * Checks that a vector rank1 update is possible for the given vectors */ protected void checkRank1(Vector x, Vector y) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (x.size() != numRows) throw new IndexOutOfBoundsException("x.size != A.numRows (" + x.size() + " != " + numRows + ")"); if (y.size() != numColumns) throw new IndexOutOfBoundsException("y.size != A.numColumns (" + y.size() + " != " + numColumns + ")"); } public Matrix rank2(Vector x, Vector y) { return rank2(1, x, y); } public Matrix rank2(double alpha, Vector x, Vector y) { checkRank2(x, y); if (alpha == 0) return this; for (VectorEntry ei : x) for (VectorEntry ej : y) { add(ei.index(), ej.index(), alpha * ei.get() * ej.get()); add(ej.index(), ei.index(), alpha * ei.get() * ej.get()); } return this; } /** * Checks that a vector rank2 update is legal with the given vectors */ protected void checkRank2(Vector x, Vector y) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (x.size() != numRows) throw new IndexOutOfBoundsException("x.size != A.numRows (" + x.size() + " != " + numRows + ")"); if (y.size() != numRows) throw new IndexOutOfBoundsException("y.size != A.numRows (" + y.size() + " != " + numRows + ")"); } public Matrix mult(Matrix B, Matrix C) { return mult(1, B, C); } public Matrix mult(double alpha, Matrix B, Matrix C) { return multAdd(alpha, B, C.zero()); } public Matrix multAdd(Matrix B, Matrix C) { return multAdd(1, B, C); } public Matrix multAdd(double alpha, Matrix B, Matrix C) { checkMultAdd(B, C); if (alpha != 0) for (int i = 0; i < numRows; ++i) for (int j = 0; j < C.numColumns(); ++j) { double dot = 0; for (int k = 0; k < numColumns; ++k) dot += get(i, k) * B.get(k, j); C.add(i, j, alpha * dot); } return C; } /** * Checks the arguments to mult and multAdd */ protected void checkMultAdd(Matrix B, Matrix C) { if (numRows != C.numRows()) throw new IndexOutOfBoundsException("A.numRows != C.numRows (" + numRows + " != " + C.numRows() + ")"); if (numColumns != B.numRows()) throw new IndexOutOfBoundsException("A.numColumns != B.numRows (" + numColumns + " != " + B.numRows() + ")"); if (B.numColumns() != C.numColumns()) throw new IndexOutOfBoundsException( "B.numColumns != C.numColumns (" + B.numRows() + " != " + C.numColumns() + ")"); } public Matrix transAmult(Matrix B, Matrix C) { return transAmult(1, B, C); } public Matrix transAmult(double alpha, Matrix B, Matrix C) { return transAmultAdd(alpha, B, C.zero()); } public Matrix transAmultAdd(Matrix B, Matrix C) { return transAmultAdd(1, B, C); } public Matrix transAmultAdd(double alpha, Matrix B, Matrix C) { checkTransAmultAdd(B, C); if (alpha != 0) for (int i = 0; i < numColumns; ++i) for (int j = 0; j < C.numColumns(); ++j) { double dot = 0; for (int k = 0; k < numRows; ++k) dot += get(k, i) * B.get(k, j); C.add(i, j, alpha * dot); } return C; } /** * Checks the arguments to transAmult and * transAmultAdd */ protected void checkTransAmultAdd(Matrix B, Matrix C) { if (numRows != B.numRows()) throw new IndexOutOfBoundsException("A.numRows != B.numRows (" + numRows + " != " + B.numRows() + ")"); if (numColumns != C.numRows()) throw new IndexOutOfBoundsException("A.numColumns != C.numRows (" + numColumns + " != " + C.numRows() + ")"); if (B.numColumns() != C.numColumns()) throw new IndexOutOfBoundsException( "B.numColumns != C.numColumns (" + B.numColumns() + " != " + C.numColumns() + ")"); } public Matrix transBmult(Matrix B, Matrix C) { return transBmult(1, B, C); } public Matrix transBmult(double alpha, Matrix B, Matrix C) { return transBmultAdd(alpha, B, C.zero()); } public Matrix transBmultAdd(Matrix B, Matrix C) { return transBmultAdd(1, B, C); } public Matrix transBmultAdd(double alpha, Matrix B, Matrix C) { checkTransBmultAdd(B, C); if (alpha != 0) for (int i = 0; i < numRows; ++i) for (int j = 0; j < C.numColumns(); ++j) { double dot = 0; for (int k = 0; k < numColumns; ++k) dot += get(i, k) * B.get(j, k); C.add(i, j, alpha * dot); } return C; } /** * Checks the arguments to transBmult and * transBmultAdd */ protected void checkTransBmultAdd(Matrix B, Matrix C) { if (numColumns != B.numColumns()) throw new IndexOutOfBoundsException( "A.numColumns != B.numColumns (" + numColumns + " != " + B.numColumns() + ")"); if (numRows != C.numRows()) throw new IndexOutOfBoundsException("A.numRows != C.numRows (" + numRows + " != " + C.numRows() + ")"); if (B.numRows() != C.numColumns()) throw new IndexOutOfBoundsException("B.numRows != C.numColumns (" + B.numRows() + " != " + C.numColumns() + ")"); } public Matrix transABmult(Matrix B, Matrix C) { return transABmult(1, B, C); } public Matrix transABmult(double alpha, Matrix B, Matrix C) { return transABmultAdd(alpha, B, C.zero()); } public Matrix transABmultAdd(Matrix B, Matrix C) { return transABmultAdd(1, B, C); } public Matrix transABmultAdd(double alpha, Matrix B, Matrix C) { checkTransABmultAdd(B, C); if (alpha != 0) for (int i = 0; i < numColumns; ++i) for (int j = 0; j < C.numColumns(); ++j) { double dot = 0; for (int k = 0; k < numRows; ++k) dot += get(k, i) * B.get(j, k); C.add(i, j, alpha * dot); } return C; } /** * Checks the arguments to transABmultAdd and * transABmultAdd */ protected void checkTransABmultAdd(Matrix B, Matrix C) { if (numRows != B.numColumns()) throw new IndexOutOfBoundsException("A.numRows != B.numColumns (" + numRows + " != " + B.numColumns() + ")"); if (numColumns != C.numRows()) throw new IndexOutOfBoundsException("A.numColumns != C.numRows (" + numColumns + " != " + C.numRows() + ")"); if (B.numRows() != C.numColumns()) throw new IndexOutOfBoundsException("B.numRows != C.numColumns (" + B.numRows() + " != " + C.numColumns() + ")"); } public Matrix solve(Matrix B, Matrix X) { throw new UnsupportedOperationException(); } public Matrix transSolve(Matrix B, Matrix X) { throw new UnsupportedOperationException(); } /** * Checks that a matrix inversion is legal for the given arguments. This is * for the square case, not for least-squares problems */ protected void checkSolve(Matrix B, Matrix X) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (B.numRows() != numRows) throw new IndexOutOfBoundsException("B.numRows != A.numRows (" + B.numRows() + " != " + numRows + ")"); if (B.numColumns() != X.numColumns()) throw new IndexOutOfBoundsException( "B.numColumns != X.numColumns (" + B.numColumns() + " != " + X.numColumns() + ")"); if (X.numRows() != numColumns) throw new IndexOutOfBoundsException("X.numRows != A.numColumns (" + X.numRows() + " != " + numColumns + ")"); } public Matrix rank1(Matrix C) { return rank1(1, C); } public Matrix rank1(double alpha, Matrix C) { checkRank1(C); if (alpha == 0) return this; return C.transBmultAdd(alpha, C, this); } /** * Checks that a matrix rank1 update is possible for the given matrix */ protected void checkRank1(Matrix C) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (numRows != C.numRows()) throw new IndexOutOfBoundsException("A.numRows != C.numRows (" + numRows + " != " + C.numRows() + ")"); } public Matrix transRank1(Matrix C) { return transRank1(1, C); } public Matrix transRank1(double alpha, Matrix C) { checkTransRank1(C); if (alpha == 0) return this; return C.transAmultAdd(alpha, C, this); } /** * Checks that a transposed rank1 update is leagal with the given argument */ protected void checkTransRank1(Matrix C) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (numRows != C.numColumns()) throw new IndexOutOfBoundsException("A.numRows != C.numColumns (" + numRows + " != " + C.numColumns() + ")"); } public Matrix rank2(Matrix B, Matrix C) { return rank2(1, B, C); } public Matrix rank2(double alpha, Matrix B, Matrix C) { checkRank2(B, C); if (alpha == 0) return this; return B.transBmultAdd(alpha, C, C.transBmultAdd(alpha, B, this)); } /** * Checks that a rank2 update is legal for the given arguments */ protected void checkRank2(Matrix B, Matrix C) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (B.numRows() != C.numRows()) throw new IndexOutOfBoundsException("B.numRows != C.numRows (" + B.numRows() + " != " + C.numRows() + ")"); if (B.numColumns() != C.numColumns()) throw new IndexOutOfBoundsException( "B.numColumns != C.numColumns (" + B.numColumns() + " != " + C.numColumns() + ")"); } public Matrix transRank2(Matrix B, Matrix C) { return transRank2(1, B, C); } public Matrix transRank2(double alpha, Matrix B, Matrix C) { checkTransRank2(B, C); if (alpha == 0) return this; return B.transAmultAdd(alpha, C, C.transAmultAdd(alpha, B, this)); } /** * Checks that a transposed rank2 update is leagal with the given arguments */ protected void checkTransRank2(Matrix B, Matrix C) { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); if (numRows != B.numColumns()) throw new IndexOutOfBoundsException("A.numRows != B.numColumns (" + numRows + " != " + B.numColumns() + ")"); if (B.numRows() != C.numRows()) throw new IndexOutOfBoundsException("B.numRows != C.numRows (" + B.numRows() + " != " + C.numRows() + ")"); if (B.numColumns() != C.numColumns()) throw new IndexOutOfBoundsException( "B.numColumns != C.numColumns (" + B.numColumns() + " != " + C.numColumns() + ")"); } public Matrix scale(double alpha) { if (alpha == 1) return this; else if (alpha == 0) return zero(); for (MatrixEntry e : this) e.set(alpha * e.get()); return this; } public Matrix set(Matrix B) { return set(1, B); } public Matrix set(double alpha, Matrix B) { checkSize(B); if (alpha == 0.) return zero(); if (B == this) return scale(alpha); zero(); for (MatrixEntry e : B) if (e.get() != 0) set(e.row(), e.column(), alpha * e.get()); return this; } public Matrix add(Matrix B) { return add(1, B); } public Matrix add(double alpha, Matrix B) { checkSize(B); if (alpha != 0) for (MatrixEntry e : B) add(e.row(), e.column(), alpha * e.get()); return this; } /** * Checks that the sizes of this matrix and the given conform */ protected void checkSize(Matrix B) { if (numRows != B.numRows()) throw new IndexOutOfBoundsException("A.numRows != B.numRows (" + numRows + " != " + B.numRows() + ")"); if (numColumns != B.numColumns()) throw new IndexOutOfBoundsException( "A.numColumns != B.numColumns (" + numColumns + " != " + B.numColumns() + ")"); } public Matrix transpose() { checkTranspose(); for (int j = 0; j < numColumns; ++j) for (int i = j + 1; i < numRows; ++i) { double value = get(i, j); set(i, j, get(j, i)); set(j, i, value); } return this; } /** * Checks that the matrix may be transposed */ protected void checkTranspose() { if (!isSquare()) throw new IndexOutOfBoundsException("!A.isSquare"); } public Matrix transpose(Matrix B) { checkTranspose(B); if (B == this) return transpose(); B.zero(); for (MatrixEntry e : this) B.set(e.column(), e.row(), e.get()); return B; } /** * Checks that this matrix can be transposed into the given matrix */ protected void checkTranspose(Matrix B) { if (numRows != B.numColumns()) throw new IndexOutOfBoundsException("A.numRows != B.numColumns (" + numRows + " != " + B.numColumns() + ")"); if (numColumns != B.numRows()) throw new IndexOutOfBoundsException("A.numColumns != B.numRows (" + numColumns + " != " + B.numRows() + ")"); } public double norm(Norm type) { if (type == Norm.One) return norm1(); else if (type == Norm.Frobenius) return normF(); else if (type == Norm.Infinity) return normInf(); else // Maxvalue return max(); } /** * Computes the 1 norm */ protected double norm1() { double[] rowSum = new double[numRows]; for (MatrixEntry e : this) rowSum[e.row()] += Math.abs(e.get()); return max(rowSum); } /** * Computes the Frobenius norm. This implementation is overflow resistant */ protected double normF() { double scale = 0, ssq = 1; for (MatrixEntry e : this) { double Aval = e.get(); if (Aval != 0) { double absxi = Math.abs(Aval); if (scale < absxi) { ssq = 1 + ssq * Math.pow(scale / absxi, 2); scale = absxi; } else ssq = ssq + Math.pow(absxi / scale, 2); } } return scale * Math.sqrt(ssq); } /** * Computes the infinity norm */ protected double normInf() { double[] columnSum = new double[numColumns]; for (MatrixEntry e : this) columnSum[e.column()] += Math.abs(e.get()); return max(columnSum); } /** * Returns the largest absolute value */ protected double max() { double max = 0; for (MatrixEntry e : this) max = Math.max(Math.abs(e.get()), max); return max; } /** * Returns the largest element of the passed array */ protected double max(double[] x) { double max = 0; for (int i = 0; i < x.length; ++i) max = Math.max(x[i], max); return max; } @Override public String toString() { // Output into coordinate format. Indices start from 1 instead of 0 Formatter out = new Formatter(); out.format("%10d %10d %19d\n", numRows, numColumns, Matrices.cardinality(this)); int i = 0; for (MatrixEntry e : this) { if (e.get() != 0) out.format("%10d %10d % .12e\n", e.row() + 1, e.column() + 1, e.get()); if (++i == 100) { out.format("...\n"); break; } } return out.toString(); } public Iterator iterator() { return new RefMatrixIterator(); } /** * Iterator over a general matrix. Uses column-major traversal */ class RefMatrixIterator implements Iterator { /** * Matrix cursor */ int row, column; /** * Matrix entry */ final RefMatrixEntry entry = new RefMatrixEntry(); public boolean hasNext() { return (row < numRows) && (column < numColumns); } public MatrixEntry next() { entry.update(row, column); // Traversal first down the columns, then the rows if (row < numRows - 1) row++; else { column++; row = 0; } return entry; } public void remove() { entry.set(0); } } /** * Matrix entry backed by the matrix. May be reused for higher performance */ class RefMatrixEntry implements MatrixEntry { /** * Matrix position */ private int row, column; /** * Updates the entry */ public void update(int row, int column) { this.row = row; this.column = column; } public int row() { return row; } public int column() { return column; } public double get() { return AbstractMatrix.this.get(row, column); } public void set(double value) { AbstractMatrix.this.set(row, column, value); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy