no.uib.cipr.matrix.sparse.DefaultIterationMonitor Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mtj Show documentation
Show all versions of mtj Show documentation
A comprehensive collection of matrix data structures, linear solvers, least squares methods,
eigenvalue, and singular value decompositions.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import no.uib.cipr.matrix.NotConvergedException;
import no.uib.cipr.matrix.Vector;
/**
* Default iteration monitor. This tester checks declares convergence if the
* absolute value of the residual norm is sufficiently small, or if the relative
* decrease is small. Divergence is decleared if too many iterations are spent,
* or the residual has grown too much. NaNs will also cause divergence to be
* flagged.
*/
public class DefaultIterationMonitor extends AbstractIterationMonitor {
/**
* Initial residual
*/
double initR;
/**
* Relative tolerance
*/
double rtol;
/**
* Absolute tolerance
*/
double atol;
/**
* Divergence tolerance
*/
double dtol;
/**
* Maximum number of iterations
*/
int maxIter;
/**
* Constructor for DefaultIterationMonitor
*
* @param maxIter
* Maximum number of iterations
* @param rtol
* Relative convergence tolerance (to initial residual)
* @param atol
* Absolute convergence tolerance
* @param dtol
* Relative divergence tolerance (to initial residual)
*/
public DefaultIterationMonitor(int maxIter, double rtol, double atol,
double dtol) {
this.maxIter = maxIter;
this.rtol = rtol;
this.atol = atol;
this.dtol = dtol;
}
/**
* Constructor for DefaultIterationMonitor. Default is 100000 iterations at
* most, relative tolerance of 1e-5, absolute tolerance of 1e-50 and a
* divergence tolerance of 1e+5.
*/
public DefaultIterationMonitor() {
this.maxIter = 100000;
this.rtol = 1e-5;
this.atol = 1e-50;
this.dtol = 1e+5;
}
/**
* Sets maximum number of iterations to permit
*
* @param maxIter
* Maximum number of iterations
*/
public void setMaxIterations(int maxIter) {
this.maxIter = maxIter;
}
/**
* Sets the relative tolerance
*
* @param rtol
* Relative convergence tolerance (to initial residual)
*/
public void setRelativeTolerance(double rtol) {
this.rtol = rtol;
}
/**
* Sets the absolute tolerance
*
* @param atol
* Absolute convergence tolerance
*/
public void setAbsoluteTolerance(double atol) {
this.atol = atol;
}
/**
* Sets the divergence tolerance
*
* @param dtol
* Relative divergence tolerance (to initial residual)
*/
public void setDivergenceTolerance(double dtol) {
this.dtol = dtol;
}
@Override
protected boolean convergedI(double r)
throws IterativeSolverNotConvergedException {
// Store initial residual
if (isFirst())
initR = r;
// Check for convergence
if (r < Math.max(rtol * initR, atol))
return true;
// Check for divergence
if (r > dtol * initR)
throw new IterativeSolverNotConvergedException(
NotConvergedException.Reason.Divergence, this);
if (iter >= maxIter)
throw new IterativeSolverNotConvergedException(
NotConvergedException.Reason.Iterations, this);
if (Double.isNaN(r))
throw new IterativeSolverNotConvergedException(
NotConvergedException.Reason.Divergence, this);
// Neither convergence nor divergence
return false;
}
@Override
protected boolean convergedI(double r, Vector x)
throws IterativeSolverNotConvergedException {
return convergedI(r);
}
}