Many resources are needed to download a project. Please understand that we have to compensate our server costs. Thank you in advance. Project price only 1 $
You can buy this project and download/modify it how often you want.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix;
import com.github.fommil.netlib.LAPACK;
import org.netlib.util.intW;
/**
* Computes eigenvalues of symmetrical, dense matrices
*/
public class SymmDenseEVD extends SymmEVD {
/**
* Double work array
*/
private final double[] work;
/**
* Integer work array
*/
private final int[] iwork;
/**
* Upper or lower part stored
*/
private final UpLo uplo;
/**
* Range of eigenvalues to compute
*/
private final JobEigRange range;
/**
* Eigenvector supports
*/
private final int[] isuppz;
/**
* Tolerance criteria
*/
private final double abstol;
/**
* Sets up an eigenvalue decomposition for symmetrical, dense matrices.
* Computes all eigenvalues and eigenvectors, and uses a low default
* tolerance criteria
*
* @param n
* Size of the matrix
* @param upper
* True if the upper part of the matrix is stored, and false if
* the lower part of the matrix is stored instead
*/
public SymmDenseEVD(int n, boolean upper) {
this(n, upper, true, LAPACK.getInstance().dlamch("Safe minimum"));
}
/**
* Sets up an eigenvalue decomposition for symmetrical, dense matrices.
* Computes all eigenvalues and eigenvectors
*
* @param n
* Size of the matrix
* @param upper
* True if the upper part of the matrix is stored, and false if
* the lower part of the matrix is stored instead
* @param abstol
* Absolute tolerance criteria
*/
public SymmDenseEVD(int n, boolean upper, double abstol) {
this(n, upper, true, abstol);
}
/**
* Sets up an eigenvalue decomposition for symmetrical, dense matrices. Uses
* a low default tolerance criteria
*
* @param n
* Size of the matrix
* @param upper
* True if the upper part of the matrix is stored, and false if
* the lower part of the matrix is stored instead
* @param vectors
* True to compute the eigenvectors, false for just the
* eigenvalues
*/
public SymmDenseEVD(int n, boolean upper, boolean vectors) {
this(n, upper, vectors, LAPACK.getInstance().dlamch("Safe minimum"));
}
/**
* Sets up an eigenvalue decomposition for symmetrical, dense matrices
*
* @param n
* Size of the matrix
* @param upper
* True if the upper part of the matrix is stored, and false if
* the lower part of the matrix is stored instead
* @param vectors
* True to compute the eigenvectors, false for just the
* eigenvalues
* @param abstol
* Absolute tolerance criteria
*/
public SymmDenseEVD(int n, boolean upper, boolean vectors, double abstol) {
super(n, vectors);
this.abstol = abstol;
uplo = upper ? UpLo.Upper : UpLo.Lower;
range = JobEigRange.All;
isuppz = new int[2 * Math.max(1, n)];
// Find the needed workspace
double[] worksize = new double[1];
int[] iworksize = new int[1];
intW info = new intW(0);
LAPACK.getInstance().dsyevr(job.netlib(), range.netlib(),
uplo.netlib(), n, new double[0], Matrices.ld(n), 0, 0, 0, 0,
abstol, new intW(1), new double[0], new double[0],
Matrices.ld(n), isuppz, worksize, -1, iworksize, -1, info);
// Allocate workspace
int lwork = 0, liwork = 0;
if (info.val != 0) {
lwork = 26 * n;
liwork = 10 * n;
} else {
lwork = (int) worksize[0];
liwork = iworksize[0];
}
lwork = Math.max(1, lwork);
liwork = Math.max(1, liwork);
work = new double[lwork];
iwork = new int[liwork];
}
/**
* Convenience method for computing the full eigenvalue decomposition of the
* given matrix
*
* @param A
* Matrix to factorize. Upper part extracted, and the matrix is
* not modified
* @return Newly allocated decomposition
* @throws NotConvergedException
*/
public static SymmDenseEVD factorize(Matrix A) throws NotConvergedException {
return new SymmDenseEVD(A.numRows(), true)
.factor(new UpperSymmDenseMatrix(A));
}
/**
* Computes the eigenvalue decomposition of the given matrix
*
* @param A
* Matrix to factorize. Overwritten on return
* @return The current eigenvalue decomposition
* @throws NotConvergedException
*/
public SymmDenseEVD factor(LowerSymmDenseMatrix A)
throws NotConvergedException {
if (uplo != UpLo.Lower)
throw new IllegalArgumentException(
"Eigenvalue computer configured for lower-symmetrical matrices");
return factor(A, A.getData());
}
/**
* Computes the eigenvalue decomposition of the given matrix
*
* @param A
* Matrix to factorize. Overwritten on return
* @return The current eigenvalue decomposition
* @throws NotConvergedException
*/
public SymmDenseEVD factor(UpperSymmDenseMatrix A)
throws NotConvergedException {
if (uplo != UpLo.Upper)
throw new IllegalArgumentException(
"Eigenvalue computer configured for upper-symmetrical matrices");
return factor(A, A.getData());
}
private SymmDenseEVD factor(Matrix A, double[] data)
throws NotConvergedException {
if (A.numRows() != n)
throw new IllegalArgumentException("A.numRows() != n");
intW info = new intW(0);
LAPACK.getInstance().dsyevr(job.netlib(), range.netlib(),
uplo.netlib(), n, data, Matrices.ld(n), 0, 0, 0, 0, abstol,
new intW(1), w,
job == JobEig.All ? Z.getData() : new double[0],
Matrices.ld(n), isuppz, work, work.length, iwork, iwork.length,
info);
if (info.val > 0)
throw new NotConvergedException(
NotConvergedException.Reason.Iterations);
else if (info.val < 0)
throw new IllegalArgumentException();
return this;
}
}