no.uib.cipr.matrix.RQ Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mtj Show documentation
Show all versions of mtj Show documentation
A comprehensive collection of matrix data structures, linear solvers, least squares methods,
eigenvalue, and singular value decompositions.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix;
import com.github.fommil.netlib.LAPACK;
import org.netlib.util.intW;
/**
* Computes RQ decompositions
*/
public class RQ extends OrthogonalComputer {
/**
* Constructs an empty RQ decomposition
*
* @param m
* Number of rows
* @param n
* Number of columns. Must be larger than or equal the number of
* rows
*/
public RQ(int m, int n) {
super(m, n, true);
if (n < m)
throw new IllegalArgumentException("n < m");
int lwork;
// Query optimal workspace. First for computing the factorization
{
work = new double[1];
intW info = new intW(0);
LAPACK.getInstance().dgerqf(m, n, new double[0], Matrices.ld(m), new double[0],
work, -1, info);
if (info.val != 0)
lwork = m;
else
lwork = (int) work[0];
lwork = Math.max(1, lwork);
work = new double[lwork];
}
// Workspace needed for generating an explicit orthogonal matrix
{
workGen = new double[1];
intW info = new intW(0);
LAPACK.getInstance().dorgrq(m, n, m, new double[0],Matrices.ld(m),
new double[0], workGen, -1, info);
if (info.val != 0)
lwork = m;
else
lwork = (int) workGen[0];
lwork = Math.max(1, lwork);
workGen = new double[lwork];
}
}
/**
* Convenience method to compute an RQ decomposition
*
* @param A
* Matrix to decompose. Not modified
* @return Newly allocated decomposition
*/
public static RQ factorize(Matrix A) {
return new RQ(A.numRows(), A.numColumns()).factor(new DenseMatrix(A));
}
@Override
public RQ factor(DenseMatrix A) {
if (Q.numRows() != A.numRows())
throw new IllegalArgumentException("Q.numRows() != A.numRows()");
else if (Q.numColumns() != A.numColumns())
throw new IllegalArgumentException(
"Q.numColumns() != A.numColumns()");
else if (R == null)
throw new IllegalArgumentException("R == null");
/*
* Calculate factorisation, and extract the triangular factor
*/
intW info = new intW(0);
LAPACK.getInstance().dgerqf(m, n, A.getData(), Matrices.ld(m), tau, work,
work.length, info);
if (info.val < 0)
throw new IllegalArgumentException();
R.zero();
for (MatrixEntry e : A)
if (e.column() >= (n - m) + e.row())
R.set(e.row(), e.column() - (n - m), e.get());
/*
* Generate the orthogonal matrix
*/
info.val = 0;
LAPACK.getInstance().dorgrq(m, n, k, A.getData(), Matrices.ld(m), tau, workGen,
workGen.length, info);
if (info.val < 0)
throw new IllegalArgumentException();
Q.set(A);
return this;
}
/**
* Returns the upper triangular factor
*/
public UpperTriangDenseMatrix getR() {
return R;
}
}