no.uib.cipr.matrix.sparse.ArpackSym Maven / Gradle / Ivy
Show all versions of mtj Show documentation
package no.uib.cipr.matrix.sparse;
import com.github.fommil.netlib.ARPACK;
import lombok.extern.java.Log;
import no.uib.cipr.matrix.*;
import org.netlib.util.doubleW;
import org.netlib.util.intW;
import java.util.Comparator;
import java.util.Map;
import java.util.TreeMap;
/**
* Uses ARPACK to partially solve symmetric eigensystems
* (ARPACK is designed to compute a subset of eigenvalues/eigenvectors).
*
* @author Sam Halliday
*/
@Log
public class ArpackSym {
public enum Ritz {
/**
* compute the NEV largest (algebraic) eigenvalues.
*/
LA,
/**
* compute the NEV smallest (algebraic) eigenvalues.
*/
SA,
/**
* compute the NEV largest (in magnitude) eigenvalues.
*/
LM,
/**
* compute the NEV smallest (in magnitude) eigenvalues.
*/
SM,
/**
* compute NEV eigenvalues, half from each end of the spectrum
*/
BE
}
private final ARPACK arpack = ARPACK.getInstance();
private static final double TOL = 0.0001;
private static final boolean EXPENSIVE_CHECKS = true;
private final Matrix matrix;
public ArpackSym(Matrix matrix) {
if (!matrix.isSquare())
throw new IllegalArgumentException("matrix must be square");
if (EXPENSIVE_CHECKS)
for (MatrixEntry entry : matrix) {
if (entry.get() != matrix.get(entry.column(), entry.row()))
throw new IllegalArgumentException("matrix must be symmetric");
}
this.matrix = matrix;
}
/**
* Solve the eigensystem for the number of eigenvalues requested.
*
* NOTE: The references to the eigenvectors will keep alive a reference to
* a {@code nev * n} double array, so use the {@code copy()} method to free
* it up if only a subset is required.
*
* @param eigenvalues
* @param ritz preference for solutions
* @return a map from eigenvalues to corresponding eigenvectors.
*/
public Map solve(int eigenvalues, Ritz ritz) {
if (eigenvalues <= 0)
throw new IllegalArgumentException(eigenvalues + " <= 0");
if (eigenvalues >= matrix.numColumns())
throw new IllegalArgumentException(eigenvalues + " >= " + (matrix.numColumns()));
int n = matrix.numRows();
intW nev = new intW(eigenvalues);
int ncv = Math.min(2 * eigenvalues, n);
String bmat = "I";
String which = ritz.name();
doubleW tol = new doubleW(TOL);
intW info = new intW(0);
int[] iparam = new int[11];
iparam[0] = 1;
iparam[2] = 300;
iparam[6] = 1;
intW ido = new intW(0);
// used for initial residual (if info != 0)
// and eventually the output residual
double[] resid = new double[n];
// Lanczos basis vectors
double[] v = new double[n * ncv];
// Arnoldi reverse communication
double[] workd = new double[3 * n];
// private work array
double[] workl = new double[ncv * (ncv + 8)];
int[] ipntr = new int[11];
int i = 0;
while (true) {
i++;
arpack.dsaupd(ido, bmat, n, which, nev.val, tol, resid, ncv, v, n, iparam, ipntr, workd, workl, workl.length, info);
if (ido.val == 99) break;
if (ido.val != -1 && ido.val != 1) throw new IllegalStateException("ido = " + ido.val);
// could be refactored to handle the other types of mode
av(workd, ipntr[0] - 1, ipntr[1] - 1);
}
ArpackSym.log.fine(i + " iterations for " + n);
if (info.val != 0) throw new IllegalStateException("info = " + info.val);
double[] d = new double[nev.val];
boolean[] select = new boolean[ncv];
double[] z = java.util.Arrays.copyOfRange(v, 0, nev.val * n);
arpack.dseupd(true, "A", select, d, z, n, 0, bmat, n, which, nev, TOL, resid, ncv, v, n, iparam, ipntr, workd, workl, workl.length, info);
if (info.val != 0) throw new IllegalStateException("info = " + info.val);
int computed = iparam[4];
ArpackSym.log.fine("computed " + computed + " eigenvalues");
Map solution = new TreeMap(new Comparator() {
@Override
public int compare(Double o1, Double o2) {
// highest first
return Double.compare(o2, o1);
}
});
DenseVector eigenvectors = new DenseVector(z, false);
for (i = 0; i < computed; i++) {
double eigenvalue = d[i];
DenseVectorSub eigenvector = new DenseVectorSub(eigenvectors, i * n, n);
solution.put(eigenvalue, eigenvector);
}
return solution;
}
private void av(double[] work, int input_offset, int output_offset) {
DenseVector w = new DenseVector(work, false);
Vector x = new DenseVectorSub(w, input_offset, matrix.numColumns());
Vector y = new DenseVectorSub(w, output_offset, matrix.numColumns());
matrix.mult(x, y);
}
}