no.uib.cipr.matrix.sparse.ILU Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of mtj Show documentation
Show all versions of mtj Show documentation
A comprehensive collection of matrix data structures, linear solvers, least squares methods,
eigenvalue, and singular value decompositions.
/*
* Copyright (C) 2003-2006 Bjørn-Ove Heimsund
*
* This file is part of MTJ.
*
* This library is free software; you can redistribute it and/or modify it
* under the terms of the GNU Lesser General Public License as published by the
* Free Software Foundation; either version 2.1 of the License, or (at your
* option) any later version.
*
* This library is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License
* for more details.
*
* You should have received a copy of the GNU Lesser General Public License
* along with this library; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
*/
package no.uib.cipr.matrix.sparse;
import no.uib.cipr.matrix.DenseVector;
import no.uib.cipr.matrix.Matrix;
import no.uib.cipr.matrix.Vector;
/**
* ILU(0) preconditioner using a compressed row matrix as internal storage
*/
public class ILU implements Preconditioner {
/**
* Factorisation matrix
*/
private final CompRowMatrix LU;
/**
* The L and U factors
*/
private Matrix L, U;
/**
* Temporary vector for solving the factorised system
*/
private final Vector y;
/**
* Sets up the ILU preconditioner
*
* @param LU
* Matrix to use internally. For best performance, its non-zero
* pattern must conform to that of the system matrix
*/
public ILU(CompRowMatrix LU) {
if (!LU.isSquare())
throw new IllegalArgumentException(
"ILU only applies to square matrices");
this.LU = LU;
int n = LU.numRows();
y = new DenseVector(n);
}
public Vector apply(Vector b, Vector x) {
// Ly = b, y = L\b
L.solve(b, y);
// Ux = L\b = y
return U.solve(y, x);
}
public Vector transApply(Vector b, Vector x) {
// U'y = b, y = U'\b
U.transSolve(b, y);
// L'x = U'\b = y
return L.transSolve(y, x);
}
public void setMatrix(Matrix A) {
LU.set(A);
factor();
}
private void factor() {
int n = LU.numRows();
// Internal CRS matrix storage
int[] colind = LU.getColumnIndices();
int[] rowptr = LU.getRowPointers();
double[] data = LU.getData();
// Find the indices to the diagonal entries
int[] diagind = findDiagonalIndices(n, colind, rowptr);
// Go down along the main diagonal
for (int k = 1; k < n; ++k)
for (int i = rowptr[k]; i < diagind[k]; ++i) {
// Get the current diagonal entry
int index = colind[i];
double LUii = data[diagind[index]];
if (LUii == 0)
throw new RuntimeException("Zero pivot encountered on row "
+ (i + 1) + " during ILU process");
// Elimination factor
double LUki = (data[i] /= LUii);
// Traverse the sparse row i, reducing on row k
for (int j = diagind[index] + 1, l = rowptr[k] + 1; j < rowptr[index + 1]; ++j) {
while (l < rowptr[k + 1] && colind[l] < colind[j])
l++;
if (colind[l] == colind[j])
data[l] -= LUki * data[j];
}
}
L = new UnitLowerCompRowMatrix(LU, diagind);
U = new UpperCompRowMatrix(LU, diagind);
}
private int[] findDiagonalIndices(int m, int[] colind, int[] rowptr) {
int[] diagind = new int[m];
for (int k = 0; k < m; ++k) {
diagind[k] = Arrays.binarySearch(colind, k, rowptr[k],
rowptr[k + 1]);
if (diagind[k] < 0)
throw new RuntimeException("Missing diagonal entry on row "
+ (k + 1));
}
return diagind;
}
}