All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algorithms.Bipartite Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
package edu.princeton.cs.algorithms;

import edu.princeton.cs.introcs.StdOut;
import edu.princeton.cs.introcs.StdRandom;

/*************************************************************************
 *  Compilation:  javac Bipartite.java
 *  Dependencies: Graph.java 
 *
 *  Given a graph, find either (i) a bipartition or (ii) an odd-length cycle.
 *  Runs in O(E + V) time.
 *
 *
 *************************************************************************/


/**
 *  The Bipartite class represents a data type for 
 *  determining whether an undirected graph is bipartite or whether
 *  it has an odd-length cycle.
 *  The isBipartite operation determines whether the graph is
 *  bipartite. If so, the color operation determines a
 *  bipartition; if not, the oddCycle operation determines a
 *  cycle with an odd number of edges.
 *  

* This implementation uses depth-first search. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the isBipartite and color operations * take constant time; the oddCycle operation takes time proportional * to the length of the cycle. *

* For additional documentation, see Section 4.1 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class Bipartite { private boolean isBipartite; // is the graph bipartite? private boolean[] color; // color[v] gives vertices on one side of bipartition private boolean[] marked; // marked[v] = true if v has been visited in DFS private int[] edgeTo; // edgeTo[v] = last edge on path to v private Stack cycle; // odd-length cycle /** * Determines whether an undirected graph is bipartite and finds either a * bipartition or an odd-length cycle. * @param G the graph */ public Bipartite(Graph G) { isBipartite = true; color = new boolean[G.V()]; marked = new boolean[G.V()]; edgeTo = new int[G.V()]; for (int v = 0; v < G.V(); v++) { if (!marked[v]) { dfs(G, v); } } assert check(G); } private void dfs(Graph G, int v) { marked[v] = true; for (int w : G.adj(v)) { // short circuit if odd-length cycle found if (cycle != null) return; // found uncolored vertex, so recur if (!marked[w]) { edgeTo[w] = v; color[w] = !color[v]; dfs(G, w); } // if v-w create an odd-length cycle, find it else if (color[w] == color[v]) { isBipartite = false; cycle = new Stack(); cycle.push(w); // don't need this unless you want to include start vertex twice for (int x = v; x != w; x = edgeTo[x]) { cycle.push(x); } cycle.push(w); } } } /** * Is the graph bipartite? * @return true if the graph is bipartite, false otherwise */ public boolean isBipartite() { return isBipartite; } /** * Returns the side of the bipartite that vertex v is on. * param v the vertex * @return the side of the bipartition that vertex v is on; two vertices * are in the same side of the bipartition if and only if they have the same color * @throws UnsupportedOperationException if this method is called when the graph * is not bipartite */ public boolean color(int v) { if (!isBipartite) throw new UnsupportedOperationException("Graph is not bipartite"); return color[v]; } /** * Returns an odd-length cycle if the graph is not bipartite, and * null otherwise. * @return an odd-length cycle (as an iterable) if the graph is not bipartite * (and hence has an odd-length cycle), and null otherwise */ public Iterable oddCycle() { return cycle; } private boolean check(Graph G) { // graph is bipartite if (isBipartite) { for (int v = 0; v < G.V(); v++) { for (int w : G.adj(v)) { if (color[v] == color[w]) { System.err.printf("edge %d-%d with %d and %d in same side of bipartition\n", v, w, v, w); return false; } } } } // graph has an odd-length cycle else { // verify cycle int first = -1, last = -1; for (int v : oddCycle()) { if (first == -1) first = v; last = v; } if (first != last) { System.err.printf("cycle begins with %d and ends with %d\n", first, last); return false; } } return true; } /** * Unit tests the Bipartite data type. */ public static void main(String[] args) { // create random bipartite graph with V vertices and E edges; then add F random edges int V = Integer.parseInt(args[0]); int E = Integer.parseInt(args[1]); int F = Integer.parseInt(args[2]); Graph G = new Graph(V); int[] vertices = new int[V]; for (int i = 0; i < V; i++) vertices[i] = i; StdRandom.shuffle(vertices); for (int i = 0; i < E; i++) { int v = StdRandom.uniform(V/2); int w = StdRandom.uniform(V/2); G.addEdge(vertices[v], vertices[V/2 + w]); } // add F extra edges for (int i = 0; i < F; i++) { int v = (int) (Math.random() * V); int w = (int) (Math.random() * V); G.addEdge(v, w); } StdOut.println(G); Bipartite b = new Bipartite(G); if (b.isBipartite()) { StdOut.println("Graph is bipartite"); for (int v = 0; v < G.V(); v++) { StdOut.println(v + ": " + b.color(v)); } } else { StdOut.print("Graph has an odd-length cycle: "); for (int x : b.oddCycle()) { StdOut.print(x + " "); } StdOut.println(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy