edu.princeton.cs.algorithms.Bipartite Maven / Gradle / Ivy
Show all versions of algorithms Show documentation
package edu.princeton.cs.algorithms;
import edu.princeton.cs.introcs.StdOut;
import edu.princeton.cs.introcs.StdRandom;
/*************************************************************************
* Compilation: javac Bipartite.java
* Dependencies: Graph.java
*
* Given a graph, find either (i) a bipartition or (ii) an odd-length cycle.
* Runs in O(E + V) time.
*
*
*************************************************************************/
/**
* The Bipartite class represents a data type for
* determining whether an undirected graph is bipartite or whether
* it has an odd-length cycle.
* The isBipartite operation determines whether the graph is
* bipartite. If so, the color operation determines a
* bipartition; if not, the oddCycle operation determines a
* cycle with an odd number of edges.
*
* This implementation uses depth-first search.
* The constructor takes time proportional to V + E
* (in the worst case),
* where V is the number of vertices and E is the number of edges.
* Afterwards, the isBipartite and color operations
* take constant time; the oddCycle operation takes time proportional
* to the length of the cycle.
*
* For additional documentation, see Section 4.1 of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class Bipartite {
private boolean isBipartite; // is the graph bipartite?
private boolean[] color; // color[v] gives vertices on one side of bipartition
private boolean[] marked; // marked[v] = true if v has been visited in DFS
private int[] edgeTo; // edgeTo[v] = last edge on path to v
private Stack cycle; // odd-length cycle
/**
* Determines whether an undirected graph is bipartite and finds either a
* bipartition or an odd-length cycle.
* @param G the graph
*/
public Bipartite(Graph G) {
isBipartite = true;
color = new boolean[G.V()];
marked = new boolean[G.V()];
edgeTo = new int[G.V()];
for (int v = 0; v < G.V(); v++) {
if (!marked[v]) {
dfs(G, v);
}
}
assert check(G);
}
private void dfs(Graph G, int v) {
marked[v] = true;
for (int w : G.adj(v)) {
// short circuit if odd-length cycle found
if (cycle != null) return;
// found uncolored vertex, so recur
if (!marked[w]) {
edgeTo[w] = v;
color[w] = !color[v];
dfs(G, w);
}
// if v-w create an odd-length cycle, find it
else if (color[w] == color[v]) {
isBipartite = false;
cycle = new Stack();
cycle.push(w); // don't need this unless you want to include start vertex twice
for (int x = v; x != w; x = edgeTo[x]) {
cycle.push(x);
}
cycle.push(w);
}
}
}
/**
* Is the graph bipartite?
* @return true if the graph is bipartite, false otherwise
*/
public boolean isBipartite() {
return isBipartite;
}
/**
* Returns the side of the bipartite that vertex v is on.
* param v the vertex
* @return the side of the bipartition that vertex v is on; two vertices
* are in the same side of the bipartition if and only if they have the same color
* @throws UnsupportedOperationException if this method is called when the graph
* is not bipartite
*/
public boolean color(int v) {
if (!isBipartite)
throw new UnsupportedOperationException("Graph is not bipartite");
return color[v];
}
/**
* Returns an odd-length cycle if the graph is not bipartite, and
* null otherwise.
* @return an odd-length cycle (as an iterable) if the graph is not bipartite
* (and hence has an odd-length cycle), and null otherwise
*/
public Iterable oddCycle() {
return cycle;
}
private boolean check(Graph G) {
// graph is bipartite
if (isBipartite) {
for (int v = 0; v < G.V(); v++) {
for (int w : G.adj(v)) {
if (color[v] == color[w]) {
System.err.printf("edge %d-%d with %d and %d in same side of bipartition\n", v, w, v, w);
return false;
}
}
}
}
// graph has an odd-length cycle
else {
// verify cycle
int first = -1, last = -1;
for (int v : oddCycle()) {
if (first == -1) first = v;
last = v;
}
if (first != last) {
System.err.printf("cycle begins with %d and ends with %d\n", first, last);
return false;
}
}
return true;
}
/**
* Unit tests the Bipartite data type.
*/
public static void main(String[] args) {
// create random bipartite graph with V vertices and E edges; then add F random edges
int V = Integer.parseInt(args[0]);
int E = Integer.parseInt(args[1]);
int F = Integer.parseInt(args[2]);
Graph G = new Graph(V);
int[] vertices = new int[V];
for (int i = 0; i < V; i++) vertices[i] = i;
StdRandom.shuffle(vertices);
for (int i = 0; i < E; i++) {
int v = StdRandom.uniform(V/2);
int w = StdRandom.uniform(V/2);
G.addEdge(vertices[v], vertices[V/2 + w]);
}
// add F extra edges
for (int i = 0; i < F; i++) {
int v = (int) (Math.random() * V);
int w = (int) (Math.random() * V);
G.addEdge(v, w);
}
StdOut.println(G);
Bipartite b = new Bipartite(G);
if (b.isBipartite()) {
StdOut.println("Graph is bipartite");
for (int v = 0; v < G.V(); v++) {
StdOut.println(v + ": " + b.color(v));
}
}
else {
StdOut.print("Graph has an odd-length cycle: ");
for (int x : b.oddCycle()) {
StdOut.print(x + " ");
}
StdOut.println();
}
}
}