All Downloads are FREE. Search and download functionalities are using the official Maven repository.

edu.princeton.cs.algorithms.CC Maven / Gradle / Ivy

There is a newer version: 4.0.1
Show newest version
package edu.princeton.cs.algorithms;

import edu.princeton.cs.introcs.In;
import edu.princeton.cs.introcs.StdOut;

/*************************************************************************
 *  Compilation:  javac CC.java
 *  Execution:    java CC filename.txt
 *  Dependencies: Graph.java StdOut.java Queue.java
 *  Data files:   http://algs4.cs.princeton.edu/41undirected/tinyG.txt
 *
 *  Compute connected components using depth first search.
 *  Runs in O(E + V) time.
 *
 *  % java CC tinyG.txt
 *  3 components
 *  0 1 2 3 4 5 6
 *  7 8 
 *  9 10 11 12
 *
 *  % java CC mediumG.txt 
 *  1 components
 *  0 1 2 3 4 5 6 7 8 9 10 ...
 *
 *  % java -Xss50m CC largeG.txt 
 *  1 components
 *  0 1 2 3 4 5 6 7 8 9 10 ...
 *
 *************************************************************************/

/**
 *  The CC class represents a data type for 
 *  determining the connected components in an undirected graph.
 *  The id operation determines in which connected component
 *  a given vertex lies; the areConnected operation
 *  determines whether two vertices are in the same connected component;
 *  the count operation determines the number of connected
 *  components; and the size operation determines the number
 *  of vertices in the connect component containing a given vertex.

 *  The component identifier of a connected component is one of the
 *  vertices in the connected component: two vertices have the same component
 *  identifier if and only if they are in the same connected component.

 *  

* This implementation uses depth-first search. * The constructor takes time proportional to V + E * (in the worst case), * where V is the number of vertices and E is the number of edges. * Afterwards, the id, count, areConnected, * and size operations take constant time. *

* For additional documentation, see Section 4.1 of * Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne. * * @author Robert Sedgewick * @author Kevin Wayne */ public class CC { private boolean[] marked; // marked[v] = has vertex v been marked? private int[] id; // id[v] = id of connected component containing v private int[] size; // size[id] = number of vertices in given component private int count; // number of connected components /** * Computes the connected components of the undirected graph G. * @param G the graph */ public CC(Graph G) { marked = new boolean[G.V()]; id = new int[G.V()]; size = new int[G.V()]; for (int v = 0; v < G.V(); v++) { if (!marked[v]) { dfs(G, v); count++; } } } // depth-first search private void dfs(Graph G, int v) { marked[v] = true; id[v] = count; size[count]++; for (int w : G.adj(v)) { if (!marked[w]) { dfs(G, w); } } } /** * Returns the component id of the connected component containing vertex v. * @param v the vertex * @return the component id of the connected component containing vertex v */ public int id(int v) { return id[v]; } /** * Returns the number of vertices in the connected component containing vertex v. * @param v the vertex * @return the number of vertices in the connected component containing vertex v */ public int size(int v) { return size[id[v]]; } /** * Returns the number of connected components. * @return the number of connected components */ public int count() { return count; } /** * Are vertices v and w in the same connected component? * @param v one vertex * @param w the other vertex * @return true if vertices v and w are in the same * connected component, and false otherwise */ public boolean areConnected(int v, int w) { return id(v) == id(w); } /** * Unit tests the CC data type. */ public static void main(String[] args) { In in = new In(args[0]); Graph G = new Graph(in); CC cc = new CC(G); // number of connected components int M = cc.count(); StdOut.println(M + " components"); // compute list of vertices in each connected component Queue[] components = (Queue[]) new Queue[M]; for (int i = 0; i < M; i++) { components[i] = new Queue(); } for (int v = 0; v < G.V(); v++) { components[cc.id(v)].enqueue(v); } // print results for (int i = 0; i < M; i++) { for (int v : components[i]) { StdOut.print(v + " "); } StdOut.println(); } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy