edu.princeton.cs.algorithms.QuickX Maven / Gradle / Ivy
Show all versions of algorithms Show documentation
package edu.princeton.cs.algorithms;
import edu.princeton.cs.introcs.StdIn;
import edu.princeton.cs.introcs.StdOut;
/*************************************************************************
* Compilation: javac QuickX.java
* Execution: java QuickX N
*
* Uses the Bentley-McIlroy 3-way partitioning scheme,
* chooses the partitioning element using Tukey's ninther,
* and cuts off to insertion sort.
*
* Reference: Engineering a Sort Function by Jon L. Bentley
* and M. Douglas McIlroy. Softwae-Practice and Experience,
* Vol. 23 (11), 1249-1265 (November 1993).
*
*************************************************************************/
/**
* The QuickX class provides static methods for sorting an
* array using an optimized version of quicksort (using Bentley-McIlroy
* 3-way partitioning, Tukey's ninther, and cutoff to insertion sort).
*
* For additional documentation, see Section 2.1 of
* Algorithms, 4th Edition by Robert Sedgewick and Kevin Wayne.
*
* @author Robert Sedgewick
* @author Kevin Wayne
*/
public class QuickX {
private static final int CUTOFF = 8; // cutoff to insertion sort, must be >= 1
// This class should not be instantiated.
private QuickX() { }
/**
* Rearranges the array in ascending order, using the natural order.
* @param a the array to be sorted
*/
public static void sort(Comparable[] a) {
sort(a, 0, a.length - 1);
}
private static void sort(Comparable[] a, int lo, int hi) {
int N = hi - lo + 1;
// cutoff to insertion sort
if (N <= CUTOFF) {
insertionSort(a, lo, hi);
return;
}
// use median-of-3 as partitioning element
else if (N <= 40) {
int m = median3(a, lo, lo + N/2, hi);
exch(a, m, lo);
}
// use Tukey ninther as partitioning element
else {
int eps = N/8;
int mid = lo + N/2;
int m1 = median3(a, lo, lo + eps, lo + eps + eps);
int m2 = median3(a, mid - eps, mid, mid + eps);
int m3 = median3(a, hi - eps - eps, hi - eps, hi);
int ninther = median3(a, m1, m2, m3);
exch(a, ninther, lo);
}
// Bentley-McIlroy 3-way partitioning
int i = lo, j = hi+1;
int p = lo, q = hi+1;
Comparable v = a[lo];
while (true) {
while (less(a[++i], v))
if (i == hi) break;
while (less(v, a[--j]))
if (j == lo) break;
// pointers cross
if (i == j && eq(a[i], v))
exch(a, ++p, i);
if (i >= j) break;
exch(a, i, j);
if (eq(a[i], v)) exch(a, ++p, i);
if (eq(a[j], v)) exch(a, --q, j);
}
i = j + 1;
for (int k = lo; k <= p; k++) exch(a, k, j--);
for (int k = hi; k >= q; k--) exch(a, k, i++);
sort(a, lo, j);
sort(a, i, hi);
}
// sort from a[lo] to a[hi] using insertion sort
private static void insertionSort(Comparable[] a, int lo, int hi) {
for (int i = lo; i <= hi; i++)
for (int j = i; j > lo && less(a[j], a[j-1]); j--)
exch(a, j, j-1);
}
// return the index of the median element among a[i], a[j], and a[k]
private static int median3(Comparable[] a, int i, int j, int k) {
return (less(a[i], a[j]) ?
(less(a[j], a[k]) ? j : less(a[i], a[k]) ? k : i) :
(less(a[k], a[j]) ? j : less(a[k], a[i]) ? k : i));
}
/***********************************************************************
* Helper sorting functions
***********************************************************************/
// is v < w ?
private static boolean less(Comparable v, Comparable w) {
return (v.compareTo(w) < 0);
}
// does v == w ?
private static boolean eq(Comparable v, Comparable w) {
return (v.compareTo(w) == 0);
}
// exchange a[i] and a[j]
private static void exch(Object[] a, int i, int j) {
Object swap = a[i];
a[i] = a[j];
a[j] = swap;
}
/***********************************************************************
* Check if array is sorted - useful for debugging
***********************************************************************/
private static boolean isSorted(Comparable[] a) {
for (int i = 1; i < a.length; i++)
if (less(a[i], a[i-1])) return false;
return true;
}
// print array to standard output
private static void show(Comparable[] a) {
for (int i = 0; i < a.length; i++) {
StdOut.println(a[i]);
}
}
/**
* Reads in a sequence of strings from standard input; quicksorts them
* (using an optimized version of quicksort);
* and prints them to standard output in ascending order.
*/
public static void main(String[] args) {
String[] a = StdIn.readAllStrings();
QuickX.sort(a);
show(a);
}
}