graphql.schema.StronglyConnectedComponentsTopologicallySorted Maven / Gradle / Ivy
package graphql.schema;
import graphql.Assert;
import graphql.Internal;
import java.util.ArrayDeque;
import java.util.ArrayList;
import java.util.Deque;
import java.util.Iterator;
import java.util.LinkedHashMap;
import java.util.LinkedHashSet;
import java.util.List;
import java.util.Map;
import java.util.Set;
/**
* This class returns a list of strongly connected components (SCC) which are topologically sorted.
* The algorithm is from https://en.wikipedia.org/wiki/Tarjan%27s_strongly_connected_components_algorithm
*
* The elements inside a SCC are additionally sorted top. itself: normally this is not possible,
* but we are using for this "inner sort" only the "reverseDependencies" Map which is made out of
* dependencies based one the Java references between Schema elements, which can't form a cycle.
*
* The inner sort algorithm is from https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
*/
@Internal
public class StronglyConnectedComponentsTopologicallySorted {
private int index;
private final Map nodeToIndex = new LinkedHashMap<>();
private final Map nodeToLowLink = new LinkedHashMap<>();
private final Map nodeToOnStack = new LinkedHashMap<>();
private final Deque stack = new ArrayDeque<>();
private final List> result = new ArrayList<>();
private final Map> reverseDependencies;
// this includes type references which means it allows for cycles
private final Map> typeRefReverseDependencies;
private StronglyConnectedComponentsTopologicallySorted(Map> reverseDependencies,
Map> typeRefReverseDependencies) {
this.reverseDependencies = reverseDependencies;
this.typeRefReverseDependencies = typeRefReverseDependencies;
}
public static List> getStronglyConnectedComponentsTopologicallySorted(
Map> reverseDependencies,
Map> typeRefReverseDependencies
) {
StronglyConnectedComponentsTopologicallySorted sccTopSort = new StronglyConnectedComponentsTopologicallySorted(reverseDependencies, typeRefReverseDependencies);
sccTopSort.calculate();
return sccTopSort.result;
}
private void calculate() {
index = 0;
for (GraphQLSchemaElement v : reverseDependencies.keySet()) {
if (nodeToIndex.get(v) == null) {
stronglyConnect(v);
}
}
}
private void stronglyConnect(GraphQLSchemaElement v) {
nodeToIndex.put(v, index);
nodeToLowLink.put(v, index);
index++;
stack.push(v);
nodeToOnStack.put(v, true);
List dependencies = reverseDependencies.get(v);
if (dependencies == null) {
dependencies = new ArrayList<>();
}
if (v instanceof GraphQLNamedType) {
String name = ((GraphQLNamedType) v).getName();
if (typeRefReverseDependencies.containsKey(name)) {
dependencies = new ArrayList<>(dependencies);
dependencies.addAll(typeRefReverseDependencies.get(name));
}
}
for (GraphQLSchemaElement w : dependencies) {
if (nodeToIndex.get(w) == null) {
stronglyConnect(w);
nodeToLowLink.put(v, Math.min(nodeToLowLink.get(v), nodeToLowLink.get(w)));
} else if (Boolean.TRUE.equals(nodeToOnStack.get(w))) {
nodeToLowLink.put(v, Math.min(nodeToLowLink.get(v), nodeToIndex.get(w)));
}
}
if (nodeToLowLink.get(v).equals(nodeToIndex.get(v))) {
Set newSCC = new LinkedHashSet<>();
GraphQLSchemaElement w;
do {
w = stack.pop();
nodeToOnStack.put(w, false);
newSCC.add(w);
} while (w != v);
result.add(topologicallySort(newSCC));
}
}
private List topologicallySort(Set allNodes) {
List result = new ArrayList<>();
Set notPermMarked = new LinkedHashSet<>(allNodes);
Set tempMarked = new LinkedHashSet<>();
Set permMarked = new LinkedHashSet<>();
/*
* Taken from: https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
* while exists nodes without a permanent mark do
* select an unmarked node n
* visit(n)
*/
while (true) {
Iterator iterator = notPermMarked.iterator();
if (!iterator.hasNext()) {
break;
}
GraphQLSchemaElement n = iterator.next();
iterator.remove();
visit(n, tempMarked, permMarked, notPermMarked, result, allNodes);
}
return result;
}
private void visit(GraphQLSchemaElement n,
Set tempMarked,
Set permMarked,
Set notPermMarked,
List result,
Set allNodes) {
/*
* Taken from: https://en.wikipedia.org/wiki/Topological_sorting#Depth-first_search
* if n has a permanent mark then
* return
* if n has a temporary mark then
* stop (not a DAG)
*
* mark n with a temporary mark
*
* for each node m with an edge from n to m do
* visit(m)
*
* remove temporary mark from n
* mark n with a permanent mark
* add n to head of L
*/
if (permMarked.contains(n)) {
return;
}
if (tempMarked.contains(n)) {
// https://en.wikipedia.org/wiki/Directed_acyclic_graph
Assert.assertShouldNeverHappen("This schema is not forming an Directed Acyclic Graph : %s has already has a temporary mark", n);
return;
}
tempMarked.add(n);
if (reverseDependencies.containsKey(n)) {
for (GraphQLSchemaElement m : reverseDependencies.get(n)) {
if (allNodes.contains(m)) {
visit(m, tempMarked, permMarked, notPermMarked, result, allNodes);
}
}
}
tempMarked.remove(n);
permMarked.add(n);
notPermMarked.remove(n);
result.add(n);
}
}
© 2015 - 2025 Weber Informatics LLC | Privacy Policy