org.bouncycastle.math.raw.Mont256 Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of bouncycastle Show documentation
Show all versions of bouncycastle Show documentation
The Bouncy Castle Java APIs for CMS, PKCS, EAC, TSP, CMP, CRMF, OCSP, and certificate generation. This jar
contains APIs for JDK 1.5 and up. The APIs can be used in conjunction with a JCE/JCA provider such as the one
provided with the Bouncy Castle Cryptography APIs.
package org.bouncycastle.math.raw;
public abstract class Mont256
{
private static final long M = 0xFFFFFFFFL;
public static int inverse32(int x)
{
// assert (x & 1) == 1;
int z = x; // x.z == 1 mod 2**3
z *= 2 - x * z; // x.z == 1 mod 2**6
z *= 2 - x * z; // x.z == 1 mod 2**12
z *= 2 - x * z; // x.z == 1 mod 2**24
z *= 2 - x * z; // x.z == 1 mod 2**48
// assert x * z == 1;
return z;
}
public static void multAdd(int[] x, int[] y, int[] z, int[] m, int mInv32)
{
int z_8 = 0;
long y_0 = y[0] & M;
for (int i = 0; i < 8; ++i)
{
long z_0 = z[0] & M;
long x_i = x[i] & M;
long prod1 = x_i * y_0;
long carry = (prod1 & M) + z_0;
long t = ((int)carry * mInv32) & M;
long prod2 = t * (m[0] & M);
carry += (prod2 & M);
// assert (int)carry == 0;
carry = (carry >>> 32) + (prod1 >>> 32) + (prod2 >>> 32);
for (int j = 1; j < 8; ++j)
{
prod1 = x_i * (y[j] & M);
prod2 = t * (m[j] & M);
carry += (prod1 & M) + (prod2 & M) + (z[j] & M);
z[j - 1] = (int)carry;
carry = (carry >>> 32) + (prod1 >>> 32) + (prod2 >>> 32);
}
carry += (z_8 & M);
z[7] = (int)carry;
z_8 = (int)(carry >>> 32);
}
if (z_8 != 0 || Nat256.gte(z, m))
{
Nat256.sub(z, m, z);
}
}
public static void multAddXF(int[] x, int[] y, int[] z, int[] m)
{
// assert m[0] == M;
int z_8 = 0;
long y_0 = y[0] & M;
for (int i = 0; i < 8; ++i)
{
long x_i = x[i] & M;
long carry = x_i * y_0 + (z[0] & M);
long t = carry & M;
carry = (carry >>> 32) + t;
for (int j = 1; j < 8; ++j)
{
long prod1 = x_i * (y[j] & M);
long prod2 = t * (m[j] & M);
carry += (prod1 & M) + (prod2 & M) + (z[j] & M);
z[j - 1] = (int)carry;
carry = (carry >>> 32) + (prod1 >>> 32) + (prod2 >>> 32);
}
carry += (z_8 & M);
z[7] = (int)carry;
z_8 = (int)(carry >>> 32);
}
if (z_8 != 0 || Nat256.gte(z, m))
{
Nat256.sub(z, m, z);
}
}
public static void reduce(int[] z, int[] m, int mInv32)
{
for (int i = 0; i < 8; ++i)
{
int z_0 = z[0];
long t = (z_0 * mInv32) & M;
long carry = t * (m[0] & M) + (z_0 & M);
// assert (int)carry == 0;
carry >>>= 32;
for (int j = 1; j < 8; ++j)
{
carry += t * (m[j] & M) + (z[j] & M);
z[j - 1] = (int)carry;
carry >>>= 32;
}
z[7] = (int)carry;
// assert carry >>> 32 == 0;
}
if (Nat256.gte(z, m))
{
Nat256.sub(z, m, z);
}
}
public static void reduceXF(int[] z, int[] m)
{
// assert m[0] == M;
for (int i = 0; i < 8; ++i)
{
int z_0 = z[0];
long t = z_0 & M;
long carry = t;
for (int j = 1; j < 8; ++j)
{
carry += t * (m[j] & M) + (z[j] & M);
z[j - 1] = (int)carry;
carry >>>= 32;
}
z[7] = (int)carry;
// assert carry >>> 32 == 0;
}
if (Nat256.gte(z, m))
{
Nat256.sub(z, m, z);
}
}
}