org.apache.commons.collections4.list.TreeList Maven / Gradle / Ivy
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.collections4.list;
import java.util.AbstractList;
import java.util.ArrayDeque;
import java.util.Collection;
import java.util.ConcurrentModificationException;
import java.util.Deque;
import java.util.Iterator;
import java.util.ListIterator;
import java.util.NoSuchElementException;
import org.apache.commons.collections4.OrderedIterator;
/**
* A List
implementation that is optimised for fast insertions and
* removals at any index in the list.
*
* This list implementation utilises a tree structure internally to ensure that
* all insertions and removals are O(log n). This provides much faster performance
* than both an ArrayList
and a LinkedList
where elements
* are inserted and removed repeatedly from anywhere in the list.
*
*
* The following relative performance statistics are indicative of this class:
*
*
* get add insert iterate remove
* TreeList 3 5 1 2 1
* ArrayList 1 1 40 1 40
* LinkedList 5800 1 350 2 325
*
*
* ArrayList
is a good general purpose list implementation.
* It is faster than TreeList
for most operations except inserting
* and removing in the middle of the list. ArrayList
also uses less
* memory as TreeList
uses one object per entry.
*
*
* LinkedList
is rarely a good choice of implementation.
* TreeList
is almost always a good replacement for it, although it
* does use slightly more memory.
*
*
* @since 3.1
*/
public class TreeList extends AbstractList {
// add; toArray; iterator; insert; get; indexOf; remove
// TreeList = 1260;7360;3080; 160; 170;3400; 170;
// ArrayList = 220;1480;1760; 6870; 50;1540; 7200;
// LinkedList = 270;7360;3350;55860;290720;2910;55200;
/** The root node in the AVL tree */
private AVLNode root;
/** The current size of the list */
private int size;
//-----------------------------------------------------------------------
/**
* Constructs a new empty list.
*/
public TreeList() {
super();
}
/**
* Constructs a new empty list that copies the specified collection.
*
* @param coll the collection to copy
* @throws NullPointerException if the collection is null
*/
public TreeList(final Collection extends E> coll) {
super();
if (!coll.isEmpty()) {
root = new AVLNode<>(coll);
size = coll.size();
}
}
//-----------------------------------------------------------------------
/**
* Gets the element at the specified index.
*
* @param index the index to retrieve
* @return the element at the specified index
*/
@Override
public E get(final int index) {
checkInterval(index, 0, size() - 1);
return root.get(index).getValue();
}
/**
* Gets the current size of the list.
*
* @return the current size
*/
@Override
public int size() {
return size;
}
/**
* Gets an iterator over the list.
*
* @return an iterator over the list
*/
@Override
public Iterator iterator() {
// override to go 75% faster
return listIterator(0);
}
/**
* Gets a ListIterator over the list.
*
* @return the new iterator
*/
@Override
public ListIterator listIterator() {
// override to go 75% faster
return listIterator(0);
}
/**
* Gets a ListIterator over the list.
*
* @param fromIndex the index to start from
* @return the new iterator
*/
@Override
public ListIterator listIterator(final int fromIndex) {
// override to go 75% faster
// cannot use EmptyIterator as iterator.add() must work
checkInterval(fromIndex, 0, size());
return new TreeListIterator<>(this, fromIndex);
}
/**
* Searches for the index of an object in the list.
*
* @param object the object to search
* @return the index of the object, -1 if not found
*/
@Override
public int indexOf(final Object object) {
// override to go 75% faster
if (root == null) {
return -1;
}
return root.indexOf(object, root.relativePosition);
}
/**
* Searches for the presence of an object in the list.
*
* @param object the object to check
* @return true if the object is found
*/
@Override
public boolean contains(final Object object) {
return indexOf(object) >= 0;
}
/**
* Converts the list into an array.
*
* @return the list as an array
*/
@Override
public Object[] toArray() {
// override to go 20% faster
final Object[] array = new Object[size()];
if (root != null) {
root.toArray(array, root.relativePosition);
}
return array;
}
//-----------------------------------------------------------------------
/**
* Adds a new element to the list.
*
* @param index the index to add before
* @param obj the element to add
*/
@Override
public void add(final int index, final E obj) {
modCount++;
checkInterval(index, 0, size());
if (root == null) {
root = new AVLNode<>(index, obj, null, null);
} else {
root = root.insert(index, obj);
}
size++;
}
/**
* Appends all of the elements in the specified collection to the end of this list,
* in the order that they are returned by the specified collection's Iterator.
*
* This method runs in O(n + log m) time, where m is
* the size of this list and n is the size of {@code c}.
*
* @param c the collection to be added to this list
* @return {@code true} if this list changed as a result of the call
* @throws NullPointerException {@inheritDoc}
*/
@Override
public boolean addAll(final Collection extends E> c) {
if (c.isEmpty()) {
return false;
}
modCount += c.size();
final AVLNode cTree = new AVLNode<>(c);
root = root == null ? cTree : root.addAll(cTree, size);
size += c.size();
return true;
}
/**
* Sets the element at the specified index.
*
* @param index the index to set
* @param obj the object to store at the specified index
* @return the previous object at that index
* @throws IndexOutOfBoundsException if the index is invalid
*/
@Override
public E set(final int index, final E obj) {
checkInterval(index, 0, size() - 1);
final AVLNode node = root.get(index);
final E result = node.value;
node.setValue(obj);
return result;
}
/**
* Removes the element at the specified index.
*
* @param index the index to remove
* @return the previous object at that index
*/
@Override
public E remove(final int index) {
modCount++;
checkInterval(index, 0, size() - 1);
final E result = get(index);
root = root.remove(index);
size--;
return result;
}
/**
* Clears the list, removing all entries.
*/
@Override
public void clear() {
modCount++;
root = null;
size = 0;
}
//-----------------------------------------------------------------------
/**
* Checks whether the index is valid.
*
* @param index the index to check
* @param startIndex the first allowed index
* @param endIndex the last allowed index
* @throws IndexOutOfBoundsException if the index is invalid
*/
private void checkInterval(final int index, final int startIndex, final int endIndex) {
if (index < startIndex || index > endIndex) {
throw new IndexOutOfBoundsException("Invalid index:" + index + ", size=" + size());
}
}
//-----------------------------------------------------------------------
/**
* Implements an AVLNode which keeps the offset updated.
*
* This node contains the real work.
* TreeList is just there to implement {@link java.util.List}.
* The nodes don't know the index of the object they are holding. They
* do know however their position relative to their parent node.
* This allows to calculate the index of a node while traversing the tree.
*
* The Faedelung calculation stores a flag for both the left and right child
* to indicate if they are a child (false) or a link as in linked list (true).
*/
static class AVLNode {
/** The left child node or the predecessor if {@link #leftIsPrevious}.*/
private AVLNode left;
/** Flag indicating that left reference is not a subtree but the predecessor. */
private boolean leftIsPrevious;
/** The right child node or the successor if {@link #rightIsNext}. */
private AVLNode right;
/** Flag indicating that right reference is not a subtree but the successor. */
private boolean rightIsNext;
/** How many levels of left/right are below this one. */
private int height;
/** The relative position, root holds absolute position. */
private int relativePosition;
/** The stored element. */
private E value;
/**
* Constructs a new node with a relative position.
*
* @param relativePosition the relative position of the node
* @param obj the value for the node
* @param rightFollower the node with the value following this one
* @param leftFollower the node with the value leading this one
*/
private AVLNode(final int relativePosition, final E obj,
final AVLNode rightFollower, final AVLNode leftFollower) {
this.relativePosition = relativePosition;
value = obj;
rightIsNext = true;
leftIsPrevious = true;
right = rightFollower;
left = leftFollower;
}
/**
* Constructs a new AVL tree from a collection.
*
* The collection must be nonempty.
*
* @param coll a nonempty collection
*/
private AVLNode(final Collection extends E> coll) {
this(coll.iterator(), 0, coll.size() - 1, 0, null, null);
}
/**
* Constructs a new AVL tree from a collection.
*
* This is a recursive helper for {@link #AVLNode(Collection)}. A call
* to this method will construct the subtree for elements {@code start}
* through {@code end} of the collection, assuming the iterator
* {@code e} already points at element {@code start}.
*
* @param iterator an iterator over the collection, which should already point
* to the element at index {@code start} within the collection
* @param start the index of the first element in the collection that
* should be in this subtree
* @param end the index of the last element in the collection that
* should be in this subtree
* @param absolutePositionOfParent absolute position of this node's
* parent, or 0 if this node is the root
* @param prev the {@code AVLNode} corresponding to element (start - 1)
* of the collection, or null if start is 0
* @param next the {@code AVLNode} corresponding to element (end + 1)
* of the collection, or null if end is the last element of the collection
*/
private AVLNode(final Iterator extends E> iterator, final int start, final int end,
final int absolutePositionOfParent, final AVLNode prev, final AVLNode next) {
final int mid = start + (end - start) / 2;
if (start < mid) {
left = new AVLNode<>(iterator, start, mid - 1, mid, prev, this);
} else {
leftIsPrevious = true;
left = prev;
}
value = iterator.next();
relativePosition = mid - absolutePositionOfParent;
if (mid < end) {
right = new AVLNode<>(iterator, mid + 1, end, mid, this, next);
} else {
rightIsNext = true;
right = next;
}
recalcHeight();
}
/**
* Gets the value.
*
* @return the value of this node
*/
E getValue() {
return value;
}
/**
* Sets the value.
*
* @param obj the value to store
*/
void setValue(final E obj) {
this.value = obj;
}
/**
* Locate the element with the given index relative to the
* offset of the parent of this node.
*/
AVLNode get(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return this;
}
final AVLNode nextNode = indexRelativeToMe < 0 ? getLeftSubTree() : getRightSubTree();
if (nextNode == null) {
return null;
}
return nextNode.get(indexRelativeToMe);
}
/**
* Locate the index that contains the specified object.
*/
int indexOf(final Object object, final int index) {
if (getLeftSubTree() != null) {
final int result = left.indexOf(object, index + left.relativePosition);
if (result != -1) {
return result;
}
}
if (value == null ? value == object : value.equals(object)) {
return index;
}
if (getRightSubTree() != null) {
return right.indexOf(object, index + right.relativePosition);
}
return -1;
}
/**
* Stores the node and its children into the array specified.
*
* @param array the array to be filled
* @param index the index of this node
*/
void toArray(final Object[] array, final int index) {
array[index] = value;
if (getLeftSubTree() != null) {
left.toArray(array, index + left.relativePosition);
}
if (getRightSubTree() != null) {
right.toArray(array, index + right.relativePosition);
}
}
/**
* Gets the next node in the list after this one.
*
* @return the next node
*/
AVLNode next() {
if (rightIsNext || right == null) {
return right;
}
return right.min();
}
/**
* Gets the node in the list before this one.
*
* @return the previous node
*/
AVLNode previous() {
if (leftIsPrevious || left == null) {
return left;
}
return left.max();
}
/**
* Inserts a node at the position index.
*
* @param index is the index of the position relative to the position of
* the parent node.
* @param obj is the object to be stored in the position.
*/
AVLNode insert(final int index, final E obj) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe <= 0) {
return insertOnLeft(indexRelativeToMe, obj);
}
return insertOnRight(indexRelativeToMe, obj);
}
private AVLNode insertOnLeft(final int indexRelativeToMe, final E obj) {
if (getLeftSubTree() == null) {
setLeft(new AVLNode<>(-1, obj, this, left), null);
} else {
setLeft(left.insert(indexRelativeToMe, obj), null);
}
if (relativePosition >= 0) {
relativePosition++;
}
final AVLNode ret = balance();
recalcHeight();
return ret;
}
private AVLNode insertOnRight(final int indexRelativeToMe, final E obj) {
if (getRightSubTree() == null) {
setRight(new AVLNode<>(+1, obj, right, this), null);
} else {
setRight(right.insert(indexRelativeToMe, obj), null);
}
if (relativePosition < 0) {
relativePosition--;
}
final AVLNode ret = balance();
recalcHeight();
return ret;
}
//-----------------------------------------------------------------------
/**
* Gets the left node, returning null if its a faedelung.
*/
private AVLNode getLeftSubTree() {
return leftIsPrevious ? null : left;
}
/**
* Gets the right node, returning null if its a faedelung.
*/
private AVLNode getRightSubTree() {
return rightIsNext ? null : right;
}
/**
* Gets the rightmost child of this node.
*
* @return the rightmost child (greatest index)
*/
private AVLNode max() {
return getRightSubTree() == null ? this : right.max();
}
/**
* Gets the leftmost child of this node.
*
* @return the leftmost child (smallest index)
*/
private AVLNode min() {
return getLeftSubTree() == null ? this : left.min();
}
/**
* Removes the node at a given position.
*
* @param index is the index of the element to be removed relative to the position of
* the parent node of the current node.
*/
AVLNode remove(final int index) {
final int indexRelativeToMe = index - relativePosition;
if (indexRelativeToMe == 0) {
return removeSelf();
}
if (indexRelativeToMe > 0) {
setRight(right.remove(indexRelativeToMe), right.right);
if (relativePosition < 0) {
relativePosition++;
}
} else {
setLeft(left.remove(indexRelativeToMe), left.left);
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return balance();
}
private AVLNode removeMax() {
if (getRightSubTree() == null) {
return removeSelf();
}
setRight(right.removeMax(), right.right);
if (relativePosition < 0) {
relativePosition++;
}
recalcHeight();
return balance();
}
private AVLNode removeMin() {
if (getLeftSubTree() == null) {
return removeSelf();
}
setLeft(left.removeMin(), left.left);
if (relativePosition > 0) {
relativePosition--;
}
recalcHeight();
return balance();
}
/**
* Removes this node from the tree.
*
* @return the node that replaces this one in the parent
*/
private AVLNode removeSelf() {
if (getRightSubTree() == null && getLeftSubTree() == null) {
return null;
}
if (getRightSubTree() == null) {
if (relativePosition > 0) {
left.relativePosition += relativePosition;
}
left.max().setRight(null, right);
return left;
}
if (getLeftSubTree() == null) {
right.relativePosition += relativePosition - (relativePosition < 0 ? 0 : 1);
right.min().setLeft(null, left);
return right;
}
if (heightRightMinusLeft() > 0) {
// more on the right, so delete from the right
final AVLNode rightMin = right.min();
value = rightMin.value;
if (leftIsPrevious) {
left = rightMin.left;
}
right = right.removeMin();
if (relativePosition < 0) {
relativePosition++;
}
} else {
// more on the left or equal, so delete from the left
final AVLNode leftMax = left.max();
value = leftMax.value;
if (rightIsNext) {
right = leftMax.right;
}
final AVLNode leftPrevious = left.left;
left = left.removeMax();
if (left == null) {
// special case where left that was deleted was a double link
// only occurs when height difference is equal
left = leftPrevious;
leftIsPrevious = true;
}
if (relativePosition > 0) {
relativePosition--;
}
}
recalcHeight();
return this;
}
//-----------------------------------------------------------------------
/**
* Balances according to the AVL algorithm.
*/
private AVLNode balance() {
switch (heightRightMinusLeft()) {
case 1 :
case 0 :
case -1 :
return this;
case -2 :
if (left.heightRightMinusLeft() > 0) {
setLeft(left.rotateLeft(), null);
}
return rotateRight();
case 2 :
if (right.heightRightMinusLeft() < 0) {
setRight(right.rotateRight(), null);
}
return rotateLeft();
default :
throw new RuntimeException("tree inconsistent!");
}
}
/**
* Gets the relative position.
*/
private int getOffset(final AVLNode node) {
if (node == null) {
return 0;
}
return node.relativePosition;
}
/**
* Sets the relative position.
*/
private int setOffset(final AVLNode node, final int newOffest) {
if (node == null) {
return 0;
}
final int oldOffset = getOffset(node);
node.relativePosition = newOffest;
return oldOffset;
}
/**
* Sets the height by calculation.
*/
private void recalcHeight() {
height = Math.max(
getLeftSubTree() == null ? -1 : getLeftSubTree().height,
getRightSubTree() == null ? -1 : getRightSubTree().height) + 1;
}
/**
* Returns the height of the node or -1 if the node is null.
*/
private int getHeight(final AVLNode node) {
return node == null ? -1 : node.height;
}
/**
* Returns the height difference right - left
*/
private int heightRightMinusLeft() {
return getHeight(getRightSubTree()) - getHeight(getLeftSubTree());
}
private AVLNode rotateLeft() {
final AVLNode newTop = right; // can't be faedelung!
final AVLNode movedNode = getRightSubTree().getLeftSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setRight(movedNode, newTop);
newTop.setLeft(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
private AVLNode rotateRight() {
final AVLNode newTop = left; // can't be faedelung
final AVLNode movedNode = getLeftSubTree().getRightSubTree();
final int newTopPosition = relativePosition + getOffset(newTop);
final int myNewPosition = -newTop.relativePosition;
final int movedPosition = getOffset(newTop) + getOffset(movedNode);
setLeft(movedNode, newTop);
newTop.setRight(this, null);
setOffset(newTop, newTopPosition);
setOffset(this, myNewPosition);
setOffset(movedNode, movedPosition);
return newTop;
}
/**
* Sets the left field to the node, or the previous node if that is null
*
* @param node the new left subtree node
* @param previous the previous node in the linked list
*/
private void setLeft(final AVLNode node, final AVLNode previous) {
leftIsPrevious = node == null;
left = leftIsPrevious ? previous : node;
recalcHeight();
}
/**
* Sets the right field to the node, or the next node if that is null
*
* @param node the new left subtree node
* @param next the next node in the linked list
*/
private void setRight(final AVLNode node, final AVLNode next) {
rightIsNext = node == null;
right = rightIsNext ? next : node;
recalcHeight();
}
/**
* Appends the elements of another tree list to this tree list by efficiently
* merging the two AVL trees. This operation is destructive to both trees and
* runs in O(log(m + n)) time.
*
* @param otherTree
* the root of the AVL tree to merge with this one
* @param currentSize
* the number of elements in this AVL tree
* @return the root of the new, merged AVL tree
*/
private AVLNode addAll(AVLNode otherTree, final int currentSize) {
final AVLNode maxNode = max();
final AVLNode otherTreeMin = otherTree.min();
// We need to efficiently merge the two AVL trees while keeping them
// balanced (or nearly balanced). To do this, we take the shorter
// tree and combine it with a similar-height subtree of the taller
// tree. There are two symmetric cases:
// * this tree is taller, or
// * otherTree is taller.
if (otherTree.height > height) {
// CASE 1: The other tree is taller than this one. We will thus
// merge this tree into otherTree.
// STEP 1: Remove the maximum element from this tree.
final AVLNode leftSubTree = removeMax();
// STEP 2: Navigate left from the root of otherTree until we
// find a subtree, s, that is no taller than me. (While we are
// navigating left, we store the nodes we encounter in a stack
// so that we can re-balance them in step 4.)
final Deque> sAncestors = new ArrayDeque<>();
AVLNode s = otherTree;
int sAbsolutePosition = s.relativePosition + currentSize;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(leftSubTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.left;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
// STEP 3: Replace s with a newly constructed subtree whose root
// is maxNode, whose left subtree is leftSubTree, and whose right
// subtree is s.
maxNode.setLeft(leftSubTree, null);
maxNode.setRight(s, otherTreeMin);
if (leftSubTree != null) {
leftSubTree.max().setRight(null, maxNode);
leftSubTree.relativePosition -= currentSize - 1;
}
if (s != null) {
s.min().setLeft(null, maxNode);
s.relativePosition = sAbsolutePosition - currentSize + 1;
}
maxNode.relativePosition = currentSize - 1 - sParentAbsolutePosition;
otherTree.relativePosition += currentSize;
// STEP 4: Re-balance the tree and recalculate the heights of s's ancestors.
s = maxNode;
while (!sAncestors.isEmpty()) {
final AVLNode sAncestor = sAncestors.pop();
sAncestor.setLeft(s, null);
s = sAncestor.balance();
}
return s;
}
otherTree = otherTree.removeMin();
final Deque> sAncestors = new ArrayDeque<>();
AVLNode s = this;
int sAbsolutePosition = s.relativePosition;
int sParentAbsolutePosition = 0;
while (s != null && s.height > getHeight(otherTree)) {
sParentAbsolutePosition = sAbsolutePosition;
sAncestors.push(s);
s = s.right;
if (s != null) {
sAbsolutePosition += s.relativePosition;
}
}
otherTreeMin.setRight(otherTree, null);
otherTreeMin.setLeft(s, maxNode);
if (otherTree != null) {
otherTree.min().setLeft(null, otherTreeMin);
otherTree.relativePosition++;
}
if (s != null) {
s.max().setRight(null, otherTreeMin);
s.relativePosition = sAbsolutePosition - currentSize;
}
otherTreeMin.relativePosition = currentSize - sParentAbsolutePosition;
s = otherTreeMin;
while (!sAncestors.isEmpty()) {
final AVLNode sAncestor = sAncestors.pop();
sAncestor.setRight(s, null);
s = sAncestor.balance();
}
return s;
}
// private void checkFaedelung() {
// AVLNode maxNode = left.max();
// if (!maxNode.rightIsFaedelung || maxNode.right != this) {
// throw new RuntimeException(maxNode + " should right-faedel to " + this);
// }
// AVLNode minNode = right.min();
// if (!minNode.leftIsFaedelung || minNode.left != this) {
// throw new RuntimeException(maxNode + " should left-faedel to " + this);
// }
// }
//
// private int checkTreeDepth() {
// int hright = (getRightSubTree() == null ? -1 : getRightSubTree().checkTreeDepth());
// // System.out.print("checkTreeDepth");
// // System.out.print(this);
// // System.out.print(" left: ");
// // System.out.print(_left);
// // System.out.print(" right: ");
// // System.out.println(_right);
//
// int hleft = (left == null ? -1 : left.checkTreeDepth());
// if (height != Math.max(hright, hleft) + 1) {
// throw new RuntimeException(
// "height should be max" + hleft + "," + hright + " but is " + height);
// }
// return height;
// }
//
// private int checkLeftSubNode() {
// if (getLeftSubTree() == null) {
// return 0;
// }
// int count = 1 + left.checkRightSubNode();
// if (left.relativePosition != -count) {
// throw new RuntimeException();
// }
// return count + left.checkLeftSubNode();
// }
//
// private int checkRightSubNode() {
// AVLNode right = getRightSubTree();
// if (right == null) {
// return 0;
// }
// int count = 1;
// count += right.checkLeftSubNode();
// if (right.relativePosition != count) {
// throw new RuntimeException();
// }
// return count + right.checkRightSubNode();
// }
/**
* Used for debugging.
*/
@Override
public String toString() {
return new StringBuilder()
.append("AVLNode(")
.append(relativePosition)
.append(',')
.append(left != null)
.append(',')
.append(value)
.append(',')
.append(getRightSubTree() != null)
.append(", faedelung ")
.append(rightIsNext)
.append(" )")
.toString();
}
}
/**
* A list iterator over the linked list.
*/
static class TreeListIterator implements ListIterator, OrderedIterator {
/** The parent list */
private final TreeList parent;
/**
* Cache of the next node that will be returned by {@link #next()}.
*/
private AVLNode next;
/**
* The index of the next node to be returned.
*/
private int nextIndex;
/**
* Cache of the last node that was returned by {@link #next()}
* or {@link #previous()}.
*/
private AVLNode current;
/**
* The index of the last node that was returned.
*/
private int currentIndex;
/**
* The modification count that the list is expected to have. If the list
* doesn't have this count, then a
* {@link java.util.ConcurrentModificationException} may be thrown by
* the operations.
*/
private int expectedModCount;
/**
* Create a ListIterator for a list.
*
* @param parent the parent list
* @param fromIndex the index to start at
*/
protected TreeListIterator(final TreeList parent, final int fromIndex) throws IndexOutOfBoundsException {
super();
this.parent = parent;
this.expectedModCount = parent.modCount;
this.next = parent.root == null ? null : parent.root.get(fromIndex);
this.nextIndex = fromIndex;
this.currentIndex = -1;
}
/**
* Checks the modification count of the list is the value that this
* object expects.
*
* @throws ConcurrentModificationException If the list's modification
* count isn't the value that was expected.
*/
protected void checkModCount() {
if (parent.modCount != expectedModCount) {
throw new ConcurrentModificationException();
}
}
@Override
public boolean hasNext() {
return nextIndex < parent.size();
}
@Override
public E next() {
checkModCount();
if (!hasNext()) {
throw new NoSuchElementException("No element at index " + nextIndex + ".");
}
if (next == null) {
next = parent.root.get(nextIndex);
}
final E value = next.getValue();
current = next;
currentIndex = nextIndex++;
next = next.next();
return value;
}
@Override
public boolean hasPrevious() {
return nextIndex > 0;
}
@Override
public E previous() {
checkModCount();
if (!hasPrevious()) {
throw new NoSuchElementException("Already at start of list.");
}
if (next == null) {
next = parent.root.get(nextIndex - 1);
} else {
next = next.previous();
}
final E value = next.getValue();
current = next;
currentIndex = --nextIndex;
return value;
}
@Override
public int nextIndex() {
return nextIndex;
}
@Override
public int previousIndex() {
return nextIndex() - 1;
}
@Override
public void remove() {
checkModCount();
if (currentIndex == -1) {
throw new IllegalStateException();
}
parent.remove(currentIndex);
if (nextIndex != currentIndex) {
// remove() following next()
nextIndex--;
}
// the AVL node referenced by next may have become stale after a remove
// reset it now: will be retrieved by next call to next()/previous() via nextIndex
next = null;
current = null;
currentIndex = -1;
expectedModCount++;
}
@Override
public void set(final E obj) {
checkModCount();
if (current == null) {
throw new IllegalStateException();
}
current.setValue(obj);
}
@Override
public void add(final E obj) {
checkModCount();
parent.add(nextIndex, obj);
current = null;
currentIndex = -1;
nextIndex++;
expectedModCount++;
}
}
}