All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.integration.SimpsonIntegrator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.integration;

import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.TooManyEvaluationsException;
import org.apache.commons.math3.util.FastMath;

/**
 * Implements 
 * Simpson's Rule for integration of real univariate functions. For
 * reference, see Introduction to Numerical Analysis, ISBN 038795452X,
 * chapter 3.
 * 

* This implementation employs the basic trapezoid rule to calculate Simpson's * rule.

* * @since 1.2 */ public class SimpsonIntegrator extends BaseAbstractUnivariateIntegrator { /** Maximal number of iterations for Simpson. */ public static final int SIMPSON_MAX_ITERATIONS_COUNT = 64; /** * Build a Simpson integrator with given accuracies and iterations counts. * @param relativeAccuracy relative accuracy of the result * @param absoluteAccuracy absolute accuracy of the result * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #SIMPSON_MAX_ITERATIONS_COUNT}) * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #SIMPSON_MAX_ITERATIONS_COUNT} */ public SimpsonIntegrator(final double relativeAccuracy, final double absoluteAccuracy, final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(relativeAccuracy, absoluteAccuracy, minimalIterationCount, maximalIterationCount); if (maximalIterationCount > SIMPSON_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, SIMPSON_MAX_ITERATIONS_COUNT, false); } } /** * Build a Simpson integrator with given iteration counts. * @param minimalIterationCount minimum number of iterations * @param maximalIterationCount maximum number of iterations * (must be less than or equal to {@link #SIMPSON_MAX_ITERATIONS_COUNT}) * @exception NotStrictlyPositiveException if minimal number of iterations * is not strictly positive * @exception NumberIsTooSmallException if maximal number of iterations * is lesser than or equal to the minimal number of iterations * @exception NumberIsTooLargeException if maximal number of iterations * is greater than {@link #SIMPSON_MAX_ITERATIONS_COUNT} */ public SimpsonIntegrator(final int minimalIterationCount, final int maximalIterationCount) throws NotStrictlyPositiveException, NumberIsTooSmallException, NumberIsTooLargeException { super(minimalIterationCount, maximalIterationCount); if (maximalIterationCount > SIMPSON_MAX_ITERATIONS_COUNT) { throw new NumberIsTooLargeException(maximalIterationCount, SIMPSON_MAX_ITERATIONS_COUNT, false); } } /** * Construct an integrator with default settings. * (max iteration count set to {@link #SIMPSON_MAX_ITERATIONS_COUNT}) */ public SimpsonIntegrator() { super(DEFAULT_MIN_ITERATIONS_COUNT, SIMPSON_MAX_ITERATIONS_COUNT); } /** {@inheritDoc} */ @Override protected double doIntegrate() throws TooManyEvaluationsException, MaxCountExceededException { TrapezoidIntegrator qtrap = new TrapezoidIntegrator(); if (getMinimalIterationCount() == 1) { return (4 * qtrap.stage(this, 1) - qtrap.stage(this, 0)) / 3.0; } // Simpson's rule requires at least two trapezoid stages. double olds = 0; double oldt = qtrap.stage(this, 0); while (true) { final double t = qtrap.stage(this, getIterations()); incrementCount(); final double s = (4 * t - oldt) / 3.0; if (getIterations() >= getMinimalIterationCount()) { final double delta = FastMath.abs(s - olds); final double rLimit = getRelativeAccuracy() * (FastMath.abs(olds) + FastMath.abs(s)) * 0.5; if ((delta <= rLimit) || (delta <= getAbsoluteAccuracy())) { return s; } } olds = s; oldt = t; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy