All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.interpolation.FieldHermiteInterpolator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.interpolation;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.FieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NoDataException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;

/** Polynomial interpolator using both sample values and sample derivatives.
 * 

* The interpolation polynomials match all sample points, including both values * and provided derivatives. There is one polynomial for each component of * the values vector. All polynomials have the same degree. The degree of the * polynomials depends on the number of points and number of derivatives at each * point. For example the interpolation polynomials for n sample points without * any derivatives all have degree n-1. The interpolation polynomials for n * sample points with the two extreme points having value and first derivative * and the remaining points having value only all have degree n+1. The * interpolation polynomial for n sample points with value, first and second * derivative for all points all have degree 3n-1. *

* * @param Type of the field elements. * * @since 3.2 */ public class FieldHermiteInterpolator> { /** Sample abscissae. */ private final List abscissae; /** Top diagonal of the divided differences array. */ private final List topDiagonal; /** Bottom diagonal of the divided differences array. */ private final List bottomDiagonal; /** Create an empty interpolator. */ public FieldHermiteInterpolator() { this.abscissae = new ArrayList(); this.topDiagonal = new ArrayList(); this.bottomDiagonal = new ArrayList(); } /** Add a sample point. *

* This method must be called once for each sample point. It is allowed to * mix some calls with values only with calls with values and first * derivatives. *

*

* The point abscissae for all calls must be different. *

* @param x abscissa of the sample point * @param value value and derivatives of the sample point * (if only one row is passed, it is the value, if two rows are * passed the first one is the value and the second the derivative * and so on) * @exception ZeroException if the abscissa difference between added point * and a previous point is zero (i.e. the two points are at same abscissa) * @exception MathArithmeticException if the number of derivatives is larger * than 20, which prevents computation of a factorial * @throws DimensionMismatchException if derivative structures are inconsistent * @throws NullArgumentException if x is null */ public void addSamplePoint(final T x, final T[] ... value) throws ZeroException, MathArithmeticException, DimensionMismatchException, NullArgumentException { MathUtils.checkNotNull(x); T factorial = x.getField().getOne(); for (int i = 0; i < value.length; ++i) { final T[] y = value[i].clone(); if (i > 1) { factorial = factorial.multiply(i); final T inv = factorial.reciprocal(); for (int j = 0; j < y.length; ++j) { y[j] = y[j].multiply(inv); } } // update the bottom diagonal of the divided differences array final int n = abscissae.size(); bottomDiagonal.add(n - i, y); T[] bottom0 = y; for (int j = i; j < n; ++j) { final T[] bottom1 = bottomDiagonal.get(n - (j + 1)); if (x.equals(abscissae.get(n - (j + 1)))) { throw new ZeroException(LocalizedFormats.DUPLICATED_ABSCISSA_DIVISION_BY_ZERO, x); } final T inv = x.subtract(abscissae.get(n - (j + 1))).reciprocal(); for (int k = 0; k < y.length; ++k) { bottom1[k] = inv.multiply(bottom0[k].subtract(bottom1[k])); } bottom0 = bottom1; } // update the top diagonal of the divided differences array topDiagonal.add(bottom0.clone()); // update the abscissae array abscissae.add(x); } } /** Interpolate value at a specified abscissa. * @param x interpolation abscissa * @return interpolated value * @exception NoDataException if sample is empty * @throws NullArgumentException if x is null */ public T[] value(T x) throws NoDataException, NullArgumentException { // safety check MathUtils.checkNotNull(x); if (abscissae.isEmpty()) { throw new NoDataException(LocalizedFormats.EMPTY_INTERPOLATION_SAMPLE); } final T[] value = MathArrays.buildArray(x.getField(), topDiagonal.get(0).length); T valueCoeff = x.getField().getOne(); for (int i = 0; i < topDiagonal.size(); ++i) { T[] dividedDifference = topDiagonal.get(i); for (int k = 0; k < value.length; ++k) { value[k] = value[k].add(dividedDifference[k].multiply(valueCoeff)); } final T deltaX = x.subtract(abscissae.get(i)); valueCoeff = valueCoeff.multiply(deltaX); } return value; } /** Interpolate value and first derivatives at a specified abscissa. * @param x interpolation abscissa * @param order maximum derivation order * @return interpolated value and derivatives (value in row 0, * 1st derivative in row 1, ... nth derivative in row n) * @exception NoDataException if sample is empty * @throws NullArgumentException if x is null */ public T[][] derivatives(T x, int order) throws NoDataException, NullArgumentException { // safety check MathUtils.checkNotNull(x); if (abscissae.isEmpty()) { throw new NoDataException(LocalizedFormats.EMPTY_INTERPOLATION_SAMPLE); } final T zero = x.getField().getZero(); final T one = x.getField().getOne(); final T[] tj = MathArrays.buildArray(x.getField(), order + 1); tj[0] = zero; for (int i = 0; i < order; ++i) { tj[i + 1] = tj[i].add(one); } final T[][] derivatives = MathArrays.buildArray(x.getField(), order + 1, topDiagonal.get(0).length); final T[] valueCoeff = MathArrays.buildArray(x.getField(), order + 1); valueCoeff[0] = x.getField().getOne(); for (int i = 0; i < topDiagonal.size(); ++i) { T[] dividedDifference = topDiagonal.get(i); final T deltaX = x.subtract(abscissae.get(i)); for (int j = order; j >= 0; --j) { for (int k = 0; k < derivatives[j].length; ++k) { derivatives[j][k] = derivatives[j][k].add(dividedDifference[k].multiply(valueCoeff[j])); } valueCoeff[j] = valueCoeff[j].multiply(deltaX); if (j > 0) { valueCoeff[j] = valueCoeff[j].add(tj[j].multiply(valueCoeff[j - 1])); } } } return derivatives; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy