All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.AbstractIntegerDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import java.io.Serializable;

import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.util.FastMath;

/**
 * Base class for integer-valued discrete distributions.  Default
 * implementations are provided for some of the methods that do not vary
 * from distribution to distribution.
 *
 */
public abstract class AbstractIntegerDistribution implements IntegerDistribution, Serializable {

    /** Serializable version identifier */
    private static final long serialVersionUID = -1146319659338487221L;

    /**
     * RandomData instance used to generate samples from the distribution.
     * @deprecated As of 3.1, to be removed in 4.0. Please use the
     * {@link #random} instance variable instead.
     */
    @Deprecated
    protected final org.apache.commons.math3.random.RandomDataImpl randomData =
        new org.apache.commons.math3.random.RandomDataImpl();

    /**
     * RNG instance used to generate samples from the distribution.
     * @since 3.1
     */
    protected final RandomGenerator random;

    /**
     * @deprecated As of 3.1, to be removed in 4.0. Please use
     * {@link #AbstractIntegerDistribution(RandomGenerator)} instead.
     */
    @Deprecated
    protected AbstractIntegerDistribution() {
        // Legacy users are only allowed to access the deprecated "randomData".
        // New users are forbidden to use this constructor.
        random = null;
    }

    /**
     * @param rng Random number generator.
     * @since 3.1
     */
    protected AbstractIntegerDistribution(RandomGenerator rng) {
        random = rng;
    }

    /**
     * {@inheritDoc}
     *
     * The default implementation uses the identity
     * 

{@code P(x0 < X <= x1) = P(X <= x1) - P(X <= x0)}

*/ public double cumulativeProbability(int x0, int x1) throws NumberIsTooLargeException { if (x1 < x0) { throw new NumberIsTooLargeException(LocalizedFormats.LOWER_ENDPOINT_ABOVE_UPPER_ENDPOINT, x0, x1, true); } return cumulativeProbability(x1) - cumulativeProbability(x0); } /** * {@inheritDoc} * * The default implementation returns *
    *
  • {@link #getSupportLowerBound()} for {@code p = 0},
  • *
  • {@link #getSupportUpperBound()} for {@code p = 1}, and
  • *
  • {@link #solveInverseCumulativeProbability(double, int, int)} for * {@code 0 < p < 1}.
  • *
*/ public int inverseCumulativeProbability(final double p) throws OutOfRangeException { if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0, 1); } int lower = getSupportLowerBound(); if (p == 0.0) { return lower; } if (lower == Integer.MIN_VALUE) { if (checkedCumulativeProbability(lower) >= p) { return lower; } } else { lower -= 1; // this ensures cumulativeProbability(lower) < p, which // is important for the solving step } int upper = getSupportUpperBound(); if (p == 1.0) { return upper; } // use the one-sided Chebyshev inequality to narrow the bracket // cf. AbstractRealDistribution.inverseCumulativeProbability(double) final double mu = getNumericalMean(); final double sigma = FastMath.sqrt(getNumericalVariance()); final boolean chebyshevApplies = !(Double.isInfinite(mu) || Double.isNaN(mu) || Double.isInfinite(sigma) || Double.isNaN(sigma) || sigma == 0.0); if (chebyshevApplies) { double k = FastMath.sqrt((1.0 - p) / p); double tmp = mu - k * sigma; if (tmp > lower) { lower = ((int) FastMath.ceil(tmp)) - 1; } k = 1.0 / k; tmp = mu + k * sigma; if (tmp < upper) { upper = ((int) FastMath.ceil(tmp)) - 1; } } return solveInverseCumulativeProbability(p, lower, upper); } /** * This is a utility function used by {@link * #inverseCumulativeProbability(double)}. It assumes {@code 0 < p < 1} and * that the inverse cumulative probability lies in the bracket {@code * (lower, upper]}. The implementation does simple bisection to find the * smallest {@code p}-quantile inf{x in Z | P(X<=x) >= p}. * * @param p the cumulative probability * @param lower a value satisfying {@code cumulativeProbability(lower) < p} * @param upper a value satisfying {@code p <= cumulativeProbability(upper)} * @return the smallest {@code p}-quantile of this distribution */ protected int solveInverseCumulativeProbability(final double p, int lower, int upper) { while (lower + 1 < upper) { int xm = (lower + upper) / 2; if (xm < lower || xm > upper) { /* * Overflow. * There will never be an overflow in both calculation methods * for xm at the same time */ xm = lower + (upper - lower) / 2; } double pm = checkedCumulativeProbability(xm); if (pm >= p) { upper = xm; } else { lower = xm; } } return upper; } /** {@inheritDoc} */ public void reseedRandomGenerator(long seed) { random.setSeed(seed); randomData.reSeed(seed); } /** * {@inheritDoc} * * The default implementation uses the * * inversion method. */ public int sample() { return inverseCumulativeProbability(random.nextDouble()); } /** * {@inheritDoc} * * The default implementation generates the sample by calling * {@link #sample()} in a loop. */ public int[] sample(int sampleSize) { if (sampleSize <= 0) { throw new NotStrictlyPositiveException( LocalizedFormats.NUMBER_OF_SAMPLES, sampleSize); } int[] out = new int[sampleSize]; for (int i = 0; i < sampleSize; i++) { out[i] = sample(); } return out; } /** * Computes the cumulative probability function and checks for {@code NaN} * values returned. Throws {@code MathInternalError} if the value is * {@code NaN}. Rethrows any exception encountered evaluating the cumulative * probability function. Throws {@code MathInternalError} if the cumulative * probability function returns {@code NaN}. * * @param argument input value * @return the cumulative probability * @throws MathInternalError if the cumulative probability is {@code NaN} */ private double checkedCumulativeProbability(int argument) throws MathInternalError { double result = Double.NaN; result = cumulativeProbability(argument); if (Double.isNaN(result)) { throw new MathInternalError(LocalizedFormats .DISCRETE_CUMULATIVE_PROBABILITY_RETURNED_NAN, argument); } return result; } /** * For a random variable {@code X} whose values are distributed according to * this distribution, this method returns {@code log(P(X = x))}, where * {@code log} is the natural logarithm. In other words, this method * represents the logarithm of the probability mass function (PMF) for the * distribution. Note that due to the floating point precision and * under/overflow issues, this method will for some distributions be more * precise and faster than computing the logarithm of * {@link #probability(int)}. *

* The default implementation simply computes the logarithm of {@code probability(x)}.

* * @param x the point at which the PMF is evaluated * @return the logarithm of the value of the probability mass function at {@code x} */ public double logProbability(int x) { return FastMath.log(probability(x)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy