All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.ExponentialDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.CombinatoricsUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.ResizableDoubleArray;

/**
 * Implementation of the exponential distribution.
 *
 * @see Exponential distribution (Wikipedia)
 * @see Exponential distribution (MathWorld)
 */
public class ExponentialDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier */
    private static final long serialVersionUID = 2401296428283614780L;
    /**
     * Used when generating Exponential samples.
     * Table containing the constants
     * q_i = sum_{j=1}^i (ln 2)^j/j! = ln 2 + (ln 2)^2/2 + ... + (ln 2)^i/i!
     * until the largest representable fraction below 1 is exceeded.
     *
     * Note that
     * 1 = 2 - 1 = exp(ln 2) - 1 = sum_{n=1}^infty (ln 2)^n / n!
     * thus q_i -> 1 as i -> +inf,
     * so the higher i, the closer to one we get (the series is not alternating).
     *
     * By trying, n = 16 in Java is enough to reach 1.0.
     */
    private static final double[] EXPONENTIAL_SA_QI;
    /** The mean of this distribution. */
    private final double mean;
    /** The logarithm of the mean, stored to reduce computing time. **/
    private final double logMean;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Initialize tables.
     */
    static {
        /**
         * Filling EXPONENTIAL_SA_QI table.
         * Note that we don't want qi = 0 in the table.
         */
        final double LN2 = FastMath.log(2);
        double qi = 0;
        int i = 1;

        /**
         * ArithmeticUtils provides factorials up to 20, so let's use that
         * limit together with Precision.EPSILON to generate the following
         * code (a priori, we know that there will be 16 elements, but it is
         * better to not hardcode it).
         */
        final ResizableDoubleArray ra = new ResizableDoubleArray(20);

        while (qi < 1) {
            qi += FastMath.pow(LN2, i) / CombinatoricsUtils.factorial(i);
            ra.addElement(qi);
            ++i;
        }

        EXPONENTIAL_SA_QI = ra.getElements();
    }

    /**
     * Create an exponential distribution with the given mean.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mean mean of this distribution. */ public ExponentialDistribution(double mean) { this(mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create an exponential distribution with the given mean. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param mean Mean of this distribution. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code mean <= 0}. * @since 2.1 */ public ExponentialDistribution(double mean, double inverseCumAccuracy) { this(new Well19937c(), mean, inverseCumAccuracy); } /** * Creates an exponential distribution. * * @param rng Random number generator. * @param mean Mean of this distribution. * @throws NotStrictlyPositiveException if {@code mean <= 0}. * @since 3.3 */ public ExponentialDistribution(RandomGenerator rng, double mean) throws NotStrictlyPositiveException { this(rng, mean, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates an exponential distribution. * * @param rng Random number generator. * @param mean Mean of this distribution. * @param inverseCumAccuracy Maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code mean <= 0}. * @since 3.1 */ public ExponentialDistribution(RandomGenerator rng, double mean, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (mean <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.MEAN, mean); } this.mean = mean; logMean = FastMath.log(mean); solverAbsoluteAccuracy = inverseCumAccuracy; } /** * Access the mean. * * @return the mean. */ public double getMean() { return mean; } /** {@inheritDoc} */ public double density(double x) { final double logDensity = logDensity(x); return logDensity == Double.NEGATIVE_INFINITY ? 0 : FastMath.exp(logDensity); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { if (x < 0) { return Double.NEGATIVE_INFINITY; } return -x / mean - logMean; } /** * {@inheritDoc} * * The implementation of this method is based on: *

*/ public double cumulativeProbability(double x) { double ret; if (x <= 0.0) { ret = 0.0; } else { ret = 1.0 - FastMath.exp(-x / mean); } return ret; } /** * {@inheritDoc} * * Returns {@code 0} when {@code p= = 0} and * {@code Double.POSITIVE_INFINITY} when {@code p == 1}. */ @Override public double inverseCumulativeProbability(double p) throws OutOfRangeException { double ret; if (p < 0.0 || p > 1.0) { throw new OutOfRangeException(p, 0.0, 1.0); } else if (p == 1.0) { ret = Double.POSITIVE_INFINITY; } else { ret = -mean * FastMath.log(1.0 - p); } return ret; } /** * {@inheritDoc} * *

Algorithm Description: this implementation uses the * * Inversion Method to generate exponentially distributed random values * from uniform deviates.

* * @return a random value. * @since 2.2 */ @Override public double sample() { // Step 1: double a = 0; double u = random.nextDouble(); // Step 2 and 3: while (u < 0.5) { a += EXPONENTIAL_SA_QI[0]; u *= 2; } // Step 4 (now u >= 0.5): u += u - 1; // Step 5: if (u <= EXPONENTIAL_SA_QI[0]) { return mean * (a + u); } // Step 6: int i = 0; // Should be 1, be we iterate before it in while using 0 double u2 = random.nextDouble(); double umin = u2; // Step 7 and 8: do { ++i; u2 = random.nextDouble(); if (u2 < umin) { umin = u2; } // Step 8: } while (u > EXPONENTIAL_SA_QI[i]); // Ensured to exit since EXPONENTIAL_SA_QI[MAX] = 1 return mean * (a + umin * EXPONENTIAL_SA_QI[0]); } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For mean parameter {@code k}, the mean is {@code k}. */ public double getNumericalMean() { return getMean(); } /** * {@inheritDoc} * * For mean parameter {@code k}, the variance is {@code k^2}. */ public double getNumericalVariance() { final double m = getMean(); return m * m; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the mean parameter. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the mean parameter. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy