All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.GammaDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the Gamma distribution.
 *
 * @see Gamma distribution (Wikipedia)
 * @see Gamma distribution (MathWorld)
 */
public class GammaDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier. */
    private static final long serialVersionUID = 20120524L;
    /** The shape parameter. */
    private final double shape;
    /** The scale parameter. */
    private final double scale;
    /**
     * The constant value of {@code shape + g + 0.5}, where {@code g} is the
     * Lanczos constant {@link Gamma#LANCZOS_G}.
     */
    private final double shiftedShape;
    /**
     * The constant value of
     * {@code shape / scale * sqrt(e / (2 * pi * (shape + g + 0.5))) / L(shape)},
     * where {@code L(shape)} is the Lanczos approximation returned by
     * {@link Gamma#lanczos(double)}. This prefactor is used in
     * {@link #density(double)}, when no overflow occurs with the natural
     * calculation.
     */
    private final double densityPrefactor1;
    /**
     * The constant value of
     * {@code log(shape / scale * sqrt(e / (2 * pi * (shape + g + 0.5))) / L(shape))},
     * where {@code L(shape)} is the Lanczos approximation returned by
     * {@link Gamma#lanczos(double)}. This prefactor is used in
     * {@link #logDensity(double)}, when no overflow occurs with the natural
     * calculation.
     */
    private final double logDensityPrefactor1;
    /**
     * The constant value of
     * {@code shape * sqrt(e / (2 * pi * (shape + g + 0.5))) / L(shape)},
     * where {@code L(shape)} is the Lanczos approximation returned by
     * {@link Gamma#lanczos(double)}. This prefactor is used in
     * {@link #density(double)}, when overflow occurs with the natural
     * calculation.
     */
    private final double densityPrefactor2;
    /**
     * The constant value of
     * {@code log(shape * sqrt(e / (2 * pi * (shape + g + 0.5))) / L(shape))},
     * where {@code L(shape)} is the Lanczos approximation returned by
     * {@link Gamma#lanczos(double)}. This prefactor is used in
     * {@link #logDensity(double)}, when overflow occurs with the natural
     * calculation.
     */
    private final double logDensityPrefactor2;
    /**
     * Lower bound on {@code y = x / scale} for the selection of the computation
     * method in {@link #density(double)}. For {@code y <= minY}, the natural
     * calculation overflows.
     */
    private final double minY;
    /**
     * Upper bound on {@code log(y)} ({@code y = x / scale}) for the selection
     * of the computation method in {@link #density(double)}. For
     * {@code log(y) >= maxLogY}, the natural calculation overflows.
     */
    private final double maxLogY;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Creates a new gamma distribution with specified values of the shape and
     * scale parameters.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param shape the shape parameter * @param scale the scale parameter * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. */ public GammaDistribution(double shape, double scale) throws NotStrictlyPositiveException { this(shape, scale, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a new gamma distribution with specified values of the shape and * scale parameters. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param shape the shape parameter * @param scale the scale parameter * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. * @since 2.1 */ public GammaDistribution(double shape, double scale, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), shape, scale, inverseCumAccuracy); } /** * Creates a Gamma distribution. * * @param rng Random number generator. * @param shape the shape parameter * @param scale the scale parameter * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. * @since 3.3 */ public GammaDistribution(RandomGenerator rng, double shape, double scale) throws NotStrictlyPositiveException { this(rng, shape, scale, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a Gamma distribution. * * @param rng Random number generator. * @param shape the shape parameter * @param scale the scale parameter * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates (defaults to * {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code shape <= 0} or * {@code scale <= 0}. * @since 3.1 */ public GammaDistribution(RandomGenerator rng, double shape, double scale, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (shape <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SHAPE, shape); } if (scale <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.SCALE, scale); } this.shape = shape; this.scale = scale; this.solverAbsoluteAccuracy = inverseCumAccuracy; this.shiftedShape = shape + Gamma.LANCZOS_G + 0.5; final double aux = FastMath.E / (2.0 * FastMath.PI * shiftedShape); this.densityPrefactor2 = shape * FastMath.sqrt(aux) / Gamma.lanczos(shape); this.logDensityPrefactor2 = FastMath.log(shape) + 0.5 * FastMath.log(aux) - FastMath.log(Gamma.lanczos(shape)); this.densityPrefactor1 = this.densityPrefactor2 / scale * FastMath.pow(shiftedShape, -shape) * FastMath.exp(shape + Gamma.LANCZOS_G); this.logDensityPrefactor1 = this.logDensityPrefactor2 - FastMath.log(scale) - FastMath.log(shiftedShape) * shape + shape + Gamma.LANCZOS_G; this.minY = shape + Gamma.LANCZOS_G - FastMath.log(Double.MAX_VALUE); this.maxLogY = FastMath.log(Double.MAX_VALUE) / (shape - 1.0); } /** * Returns the shape parameter of {@code this} distribution. * * @return the shape parameter * @deprecated as of version 3.1, {@link #getShape()} should be preferred. * This method will be removed in version 4.0. */ @Deprecated public double getAlpha() { return shape; } /** * Returns the shape parameter of {@code this} distribution. * * @return the shape parameter * @since 3.1 */ public double getShape() { return shape; } /** * Returns the scale parameter of {@code this} distribution. * * @return the scale parameter * @deprecated as of version 3.1, {@link #getScale()} should be preferred. * This method will be removed in version 4.0. */ @Deprecated public double getBeta() { return scale; } /** * Returns the scale parameter of {@code this} distribution. * * @return the scale parameter * @since 3.1 */ public double getScale() { return scale; } /** {@inheritDoc} */ public double density(double x) { /* The present method must return the value of * * 1 x a - x * ---------- (-) exp(---) * x Gamma(a) b b * * where a is the shape parameter, and b the scale parameter. * Substituting the Lanczos approximation of Gamma(a) leads to the * following expression of the density * * a e 1 y a * - sqrt(------------------) ---- (-----------) exp(a - y + g), * x 2 pi (a + g + 0.5) L(a) a + g + 0.5 * * where y = x / b. The above formula is the "natural" computation, which * is implemented when no overflow is likely to occur. If overflow occurs * with the natural computation, the following identity is used. It is * based on the BOOST library * http://www.boost.org/doc/libs/1_35_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/sf_gamma/igamma.html * Formula (15) needs adaptations, which are detailed below. * * y a * (-----------) exp(a - y + g) * a + g + 0.5 * y - a - g - 0.5 y (g + 0.5) * = exp(a log1pm(---------------) - ----------- + g), * a + g + 0.5 a + g + 0.5 * * where log1pm(z) = log(1 + z) - z. Therefore, the value to be * returned is * * a e 1 * - sqrt(------------------) ---- * x 2 pi (a + g + 0.5) L(a) * y - a - g - 0.5 y (g + 0.5) * * exp(a log1pm(---------------) - ----------- + g). * a + g + 0.5 a + g + 0.5 */ if (x < 0) { return 0; } final double y = x / scale; if ((y <= minY) || (FastMath.log(y) >= maxLogY)) { /* * Overflow. */ final double aux1 = (y - shiftedShape) / shiftedShape; final double aux2 = shape * (FastMath.log1p(aux1) - aux1); final double aux3 = -y * (Gamma.LANCZOS_G + 0.5) / shiftedShape + Gamma.LANCZOS_G + aux2; return densityPrefactor2 / x * FastMath.exp(aux3); } /* * Natural calculation. */ return densityPrefactor1 * FastMath.exp(-y) * FastMath.pow(y, shape - 1); } /** {@inheritDoc} **/ @Override public double logDensity(double x) { /* * see the comment in {@link #density(double)} for computation details */ if (x < 0) { return Double.NEGATIVE_INFINITY; } final double y = x / scale; if ((y <= minY) || (FastMath.log(y) >= maxLogY)) { /* * Overflow. */ final double aux1 = (y - shiftedShape) / shiftedShape; final double aux2 = shape * (FastMath.log1p(aux1) - aux1); final double aux3 = -y * (Gamma.LANCZOS_G + 0.5) / shiftedShape + Gamma.LANCZOS_G + aux2; return logDensityPrefactor2 - FastMath.log(x) + aux3; } /* * Natural calculation. */ return logDensityPrefactor1 - y + FastMath.log(y) * (shape - 1); } /** * {@inheritDoc} * * The implementation of this method is based on: *

    *
  • * * Chi-Squared Distribution, equation (9). *
  • *
  • Casella, G., & Berger, R. (1990). Statistical Inference. * Belmont, CA: Duxbury Press. *
  • *
*/ public double cumulativeProbability(double x) { double ret; if (x <= 0) { ret = 0; } else { ret = Gamma.regularizedGammaP(shape, x / scale); } return ret; } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For shape parameter {@code alpha} and scale parameter {@code beta}, the * mean is {@code alpha * beta}. */ public double getNumericalMean() { return shape * scale; } /** * {@inheritDoc} * * For shape parameter {@code alpha} and scale parameter {@code beta}, the * variance is {@code alpha * beta^2}. * * @return {@inheritDoc} */ public double getNumericalVariance() { return shape * scale * scale; } /** * {@inheritDoc} * * The lower bound of the support is always 0 no matter the parameters. * * @return lower bound of the support (always 0) */ public double getSupportLowerBound() { return 0; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity * no matter the parameters. * * @return upper bound of the support (always Double.POSITIVE_INFINITY) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** *

This implementation uses the following algorithms:

* *

For 0 < shape < 1:
* Ahrens, J. H. and Dieter, U., Computer methods for * sampling from gamma, beta, Poisson and binomial distributions. * Computing, 12, 223-246, 1974.

* *

For shape >= 1:
* Marsaglia and Tsang, A Simple Method for Generating * Gamma Variables. ACM Transactions on Mathematical Software, * Volume 26 Issue 3, September, 2000.

* * @return random value sampled from the Gamma(shape, scale) distribution */ @Override public double sample() { if (shape < 1) { // [1]: p. 228, Algorithm GS while (true) { // Step 1: final double u = random.nextDouble(); final double bGS = 1 + shape / FastMath.E; final double p = bGS * u; if (p <= 1) { // Step 2: final double x = FastMath.pow(p, 1 / shape); final double u2 = random.nextDouble(); if (u2 > FastMath.exp(-x)) { // Reject continue; } else { return scale * x; } } else { // Step 3: final double x = -1 * FastMath.log((bGS - p) / shape); final double u2 = random.nextDouble(); if (u2 > FastMath.pow(x, shape - 1)) { // Reject continue; } else { return scale * x; } } } } // Now shape >= 1 final double d = shape - 0.333333333333333333; final double c = 1 / (3 * FastMath.sqrt(d)); while (true) { final double x = random.nextGaussian(); final double v = (1 + c * x) * (1 + c * x) * (1 + c * x); if (v <= 0) { continue; } final double x2 = x * x; final double u = random.nextDouble(); // Squeeze if (u < 1 - 0.0331 * x2 * x2) { return scale * d * v; } if (FastMath.log(u) < 0.5 * x2 + d * (1 - v + FastMath.log(v))) { return scale * d * v; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy