All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.TriangularDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of the triangular real distribution.
 *
 * @see 
 * Triangular distribution (Wikipedia)
 *
 * @since 3.0
 */
public class TriangularDistribution extends AbstractRealDistribution {
    /** Serializable version identifier. */
    private static final long serialVersionUID = 20120112L;
    /** Lower limit of this distribution (inclusive). */
    private final double a;
    /** Upper limit of this distribution (inclusive). */
    private final double b;
    /** Mode of this distribution. */
    private final double c;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;

    /**
     * Creates a triangular real distribution using the given lower limit,
     * upper limit, and mode.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param a Lower limit of this distribution (inclusive). * @param b Upper limit of this distribution (inclusive). * @param c Mode of this distribution. * @throws NumberIsTooLargeException if {@code a >= b} or if {@code c > b}. * @throws NumberIsTooSmallException if {@code c < a}. */ public TriangularDistribution(double a, double c, double b) throws NumberIsTooLargeException, NumberIsTooSmallException { this(new Well19937c(), a, c, b); } /** * Creates a triangular distribution. * * @param rng Random number generator. * @param a Lower limit of this distribution (inclusive). * @param b Upper limit of this distribution (inclusive). * @param c Mode of this distribution. * @throws NumberIsTooLargeException if {@code a >= b} or if {@code c > b}. * @throws NumberIsTooSmallException if {@code c < a}. * @since 3.1 */ public TriangularDistribution(RandomGenerator rng, double a, double c, double b) throws NumberIsTooLargeException, NumberIsTooSmallException { super(rng); if (a >= b) { throw new NumberIsTooLargeException( LocalizedFormats.LOWER_BOUND_NOT_BELOW_UPPER_BOUND, a, b, false); } if (c < a) { throw new NumberIsTooSmallException( LocalizedFormats.NUMBER_TOO_SMALL, c, a, true); } if (c > b) { throw new NumberIsTooLargeException( LocalizedFormats.NUMBER_TOO_LARGE, c, b, true); } this.a = a; this.c = c; this.b = b; solverAbsoluteAccuracy = FastMath.max(FastMath.ulp(a), FastMath.ulp(b)); } /** * Returns the mode {@code c} of this distribution. * * @return the mode {@code c} of this distribution */ public double getMode() { return c; } /** * {@inheritDoc} * *

* For this distribution, the returned value is not really meaningful, * since exact formulas are implemented for the computation of the * {@link #inverseCumulativeProbability(double)} (no solver is invoked). *

*

* For lower limit {@code a} and upper limit {@code b}, the current * implementation returns {@code max(ulp(a), ulp(b)}. *

*/ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For lower limit {@code a}, upper limit {@code b} and mode {@code c}, the * PDF is given by *
    *
  • {@code 2 * (x - a) / [(b - a) * (c - a)]} if {@code a <= x < c},
  • *
  • {@code 2 / (b - a)} if {@code x = c},
  • *
  • {@code 2 * (b - x) / [(b - a) * (b - c)]} if {@code c < x <= b},
  • *
  • {@code 0} otherwise. *
*/ public double density(double x) { if (x < a) { return 0; } if (a <= x && x < c) { double divident = 2 * (x - a); double divisor = (b - a) * (c - a); return divident / divisor; } if (x == c) { return 2 / (b - a); } if (c < x && x <= b) { double divident = 2 * (b - x); double divisor = (b - a) * (b - c); return divident / divisor; } return 0; } /** * {@inheritDoc} * * For lower limit {@code a}, upper limit {@code b} and mode {@code c}, the * CDF is given by *
    *
  • {@code 0} if {@code x < a},
  • *
  • {@code (x - a)^2 / [(b - a) * (c - a)]} if {@code a <= x < c},
  • *
  • {@code (c - a) / (b - a)} if {@code x = c},
  • *
  • {@code 1 - (b - x)^2 / [(b - a) * (b - c)]} if {@code c < x <= b},
  • *
  • {@code 1} if {@code x > b}.
  • *
*/ public double cumulativeProbability(double x) { if (x < a) { return 0; } if (a <= x && x < c) { double divident = (x - a) * (x - a); double divisor = (b - a) * (c - a); return divident / divisor; } if (x == c) { return (c - a) / (b - a); } if (c < x && x <= b) { double divident = (b - x) * (b - x); double divisor = (b - a) * (b - c); return 1 - (divident / divisor); } return 1; } /** * {@inheritDoc} * * For lower limit {@code a}, upper limit {@code b}, and mode {@code c}, * the mean is {@code (a + b + c) / 3}. */ public double getNumericalMean() { return (a + b + c) / 3; } /** * {@inheritDoc} * * For lower limit {@code a}, upper limit {@code b}, and mode {@code c}, * the variance is {@code (a^2 + b^2 + c^2 - a * b - a * c - b * c) / 18}. */ public double getNumericalVariance() { return (a * a + b * b + c * c - a * b - a * c - b * c) / 18; } /** * {@inheritDoc} * * The lower bound of the support is equal to the lower limit parameter * {@code a} of the distribution. * * @return lower bound of the support */ public double getSupportLowerBound() { return a; } /** * {@inheritDoc} * * The upper bound of the support is equal to the upper limit parameter * {@code b} of the distribution. * * @return upper bound of the support */ public double getSupportUpperBound() { return b; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return true; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return true; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } /** {@inheritDoc} */ @Override public double inverseCumulativeProbability(double p) throws OutOfRangeException { if (p < 0 || p > 1) { throw new OutOfRangeException(p, 0, 1); } if (p == 0) { return a; } if (p == 1) { return b; } if (p < (c - a) / (b - a)) { return a + FastMath.sqrt(p * (b - a) * (c - a)); } return b - FastMath.sqrt((1 - p) * (b - a) * (b - c)); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy