All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.fitting.HarmonicCurveFitter Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting;

import java.util.ArrayList;
import java.util.Collection;
import java.util.List;

import org.apache.commons.math3.analysis.function.HarmonicOscillator;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.ZeroException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresBuilder;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.util.FastMath;

/**
 * Fits points to a {@link
 * org.apache.commons.math3.analysis.function.HarmonicOscillator.Parametric harmonic oscillator}
 * function.
 * 
* The {@link #withStartPoint(double[]) initial guess values} must be passed * in the following order: *
    *
  • Amplitude
  • *
  • Angular frequency
  • *
  • phase
  • *
* The optimal values will be returned in the same order. * * @since 3.3 */ public class HarmonicCurveFitter extends AbstractCurveFitter { /** Parametric function to be fitted. */ private static final HarmonicOscillator.Parametric FUNCTION = new HarmonicOscillator.Parametric(); /** Initial guess. */ private final double[] initialGuess; /** Maximum number of iterations of the optimization algorithm. */ private final int maxIter; /** * Contructor used by the factory methods. * * @param initialGuess Initial guess. If set to {@code null}, the initial guess * will be estimated using the {@link ParameterGuesser}. * @param maxIter Maximum number of iterations of the optimization algorithm. */ private HarmonicCurveFitter(double[] initialGuess, int maxIter) { this.initialGuess = initialGuess; this.maxIter = maxIter; } /** * Creates a default curve fitter. * The initial guess for the parameters will be {@link ParameterGuesser} * computed automatically, and the maximum number of iterations of the * optimization algorithm is set to {@link Integer#MAX_VALUE}. * * @return a curve fitter. * * @see #withStartPoint(double[]) * @see #withMaxIterations(int) */ public static HarmonicCurveFitter create() { return new HarmonicCurveFitter(null, Integer.MAX_VALUE); } /** * Configure the start point (initial guess). * @param newStart new start point (initial guess) * @return a new instance. */ public HarmonicCurveFitter withStartPoint(double[] newStart) { return new HarmonicCurveFitter(newStart.clone(), maxIter); } /** * Configure the maximum number of iterations. * @param newMaxIter maximum number of iterations * @return a new instance. */ public HarmonicCurveFitter withMaxIterations(int newMaxIter) { return new HarmonicCurveFitter(initialGuess, newMaxIter); } /** {@inheritDoc} */ @Override protected LeastSquaresProblem getProblem(Collection observations) { // Prepare least-squares problem. final int len = observations.size(); final double[] target = new double[len]; final double[] weights = new double[len]; int i = 0; for (WeightedObservedPoint obs : observations) { target[i] = obs.getY(); weights[i] = obs.getWeight(); ++i; } final AbstractCurveFitter.TheoreticalValuesFunction model = new AbstractCurveFitter.TheoreticalValuesFunction(FUNCTION, observations); final double[] startPoint = initialGuess != null ? initialGuess : // Compute estimation. new ParameterGuesser(observations).guess(); // Return a new optimizer set up to fit a Gaussian curve to the // observed points. return new LeastSquaresBuilder(). maxEvaluations(Integer.MAX_VALUE). maxIterations(maxIter). start(startPoint). target(target). weight(new DiagonalMatrix(weights)). model(model.getModelFunction(), model.getModelFunctionJacobian()). build(); } /** * This class guesses harmonic coefficients from a sample. *

The algorithm used to guess the coefficients is as follows:

* *

We know \( f(t) \) at some sampling points \( t_i \) and want * to find \( a \), \( \omega \) and \( \phi \) such that * \( f(t) = a \cos (\omega t + \phi) \). *

* *

From the analytical expression, we can compute two primitives : * \[ * If2(t) = \int f^2 dt = a^2 (t + S(t)) / 2 * \] * \[ * If'2(t) = \int f'^2 dt = a^2 \omega^2 (t - S(t)) / 2 * \] * where \(S(t) = \frac{\sin(2 (\omega t + \phi))}{2\omega}\) *

* *

We can remove \(S\) between these expressions : * \[ * If'2(t) = a^2 \omega^2 t - \omega^2 If2(t) * \] *

* *

The preceding expression shows that \(If'2 (t)\) is a linear * combination of both \(t\) and \(If2(t)\): * \[ * If'2(t) = A t + B If2(t) * \] *

* *

From the primitive, we can deduce the same form for definite * integrals between \(t_1\) and \(t_i\) for each \(t_i\) : * \[ * If2(t_i) - If2(t_1) = A (t_i - t_1) + B (If2 (t_i) - If2(t_1)) * \] *

* *

We can find the coefficients \(A\) and \(B\) that best fit the sample * to this linear expression by computing the definite integrals for * each sample points. *

* *

For a bilinear expression \(z(x_i, y_i) = A x_i + B y_i\), the * coefficients \(A\) and \(B\) that minimize a least-squares criterion * \(\sum (z_i - z(x_i, y_i))^2\) are given by these expressions:

* \[ * A = \frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i} * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i} * \] * \[ * B = \frac{\sum x_i x_i \sum y_i z_i - \sum x_i y_i \sum x_i z_i} * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i} * * \] * *

In fact, we can assume that both \(a\) and \(\omega\) are positive and * compute them directly, knowing that \(A = a^2 \omega^2\) and that * \(B = -\omega^2\). The complete algorithm is therefore:

* * For each \(t_i\) from \(t_1\) to \(t_{n-1}\), compute: * \[ f(t_i) \] * \[ f'(t_i) = \frac{f (t_{i+1}) - f(t_{i-1})}{t_{i+1} - t_{i-1}} \] * \[ x_i = t_i - t_1 \] * \[ y_i = \int_{t_1}^{t_i} f^2(t) dt \] * \[ z_i = \int_{t_1}^{t_i} f'^2(t) dt \] * and update the sums: * \[ \sum x_i x_i, \sum y_i y_i, \sum x_i y_i, \sum x_i z_i, \sum y_i z_i \] * * Then: * \[ * a = \sqrt{\frac{\sum y_i y_i \sum x_i z_i - \sum x_i y_i \sum y_i z_i } * {\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i }} * \] * \[ * \omega = \sqrt{\frac{\sum x_i y_i \sum x_i z_i - \sum x_i x_i \sum y_i z_i} * {\sum x_i x_i \sum y_i y_i - \sum x_i y_i \sum x_i y_i}} * \] * *

Once we know \(\omega\) we can compute: * \[ * fc = \omega f(t) \cos(\omega t) - f'(t) \sin(\omega t) * \] * \[ * fs = \omega f(t) \sin(\omega t) + f'(t) \cos(\omega t) * \] *

* *

It appears that \(fc = a \omega \cos(\phi)\) and * \(fs = -a \omega \sin(\phi)\), so we can use these * expressions to compute \(\phi\). The best estimate over the sample is * given by averaging these expressions. *

* *

Since integrals and means are involved in the preceding * estimations, these operations run in \(O(n)\) time, where \(n\) is the * number of measurements.

*/ public static class ParameterGuesser { /** Amplitude. */ private final double a; /** Angular frequency. */ private final double omega; /** Phase. */ private final double phi; /** * Simple constructor. * * @param observations Sampled observations. * @throws NumberIsTooSmallException if the sample is too short. * @throws ZeroException if the abscissa range is zero. * @throws MathIllegalStateException when the guessing procedure cannot * produce sensible results. */ public ParameterGuesser(Collection observations) { if (observations.size() < 4) { throw new NumberIsTooSmallException(LocalizedFormats.INSUFFICIENT_OBSERVED_POINTS_IN_SAMPLE, observations.size(), 4, true); } final WeightedObservedPoint[] sorted = sortObservations(observations).toArray(new WeightedObservedPoint[0]); final double aOmega[] = guessAOmega(sorted); a = aOmega[0]; omega = aOmega[1]; phi = guessPhi(sorted); } /** * Gets an estimation of the parameters. * * @return the guessed parameters, in the following order: *
    *
  • Amplitude
  • *
  • Angular frequency
  • *
  • Phase
  • *
*/ public double[] guess() { return new double[] { a, omega, phi }; } /** * Sort the observations with respect to the abscissa. * * @param unsorted Input observations. * @return the input observations, sorted. */ private List sortObservations(Collection unsorted) { final List observations = new ArrayList(unsorted); // Since the samples are almost always already sorted, this // method is implemented as an insertion sort that reorders the // elements in place. Insertion sort is very efficient in this case. WeightedObservedPoint curr = observations.get(0); final int len = observations.size(); for (int j = 1; j < len; j++) { WeightedObservedPoint prec = curr; curr = observations.get(j); if (curr.getX() < prec.getX()) { // the current element should be inserted closer to the beginning int i = j - 1; WeightedObservedPoint mI = observations.get(i); while ((i >= 0) && (curr.getX() < mI.getX())) { observations.set(i + 1, mI); if (i-- != 0) { mI = observations.get(i); } } observations.set(i + 1, curr); curr = observations.get(j); } } return observations; } /** * Estimate a first guess of the amplitude and angular frequency. * * @param observations Observations, sorted w.r.t. abscissa. * @throws ZeroException if the abscissa range is zero. * @throws MathIllegalStateException when the guessing procedure cannot * produce sensible results. * @return the guessed amplitude (at index 0) and circular frequency * (at index 1). */ private double[] guessAOmega(WeightedObservedPoint[] observations) { final double[] aOmega = new double[2]; // initialize the sums for the linear model between the two integrals double sx2 = 0; double sy2 = 0; double sxy = 0; double sxz = 0; double syz = 0; double currentX = observations[0].getX(); double currentY = observations[0].getY(); double f2Integral = 0; double fPrime2Integral = 0; final double startX = currentX; for (int i = 1; i < observations.length; ++i) { // one step forward final double previousX = currentX; final double previousY = currentY; currentX = observations[i].getX(); currentY = observations[i].getY(); // update the integrals of f2 and f'2 // considering a linear model for f (and therefore constant f') final double dx = currentX - previousX; final double dy = currentY - previousY; final double f2StepIntegral = dx * (previousY * previousY + previousY * currentY + currentY * currentY) / 3; final double fPrime2StepIntegral = dy * dy / dx; final double x = currentX - startX; f2Integral += f2StepIntegral; fPrime2Integral += fPrime2StepIntegral; sx2 += x * x; sy2 += f2Integral * f2Integral; sxy += x * f2Integral; sxz += x * fPrime2Integral; syz += f2Integral * fPrime2Integral; } // compute the amplitude and pulsation coefficients double c1 = sy2 * sxz - sxy * syz; double c2 = sxy * sxz - sx2 * syz; double c3 = sx2 * sy2 - sxy * sxy; if ((c1 / c2 < 0) || (c2 / c3 < 0)) { final int last = observations.length - 1; // Range of the observations, assuming that the // observations are sorted. final double xRange = observations[last].getX() - observations[0].getX(); if (xRange == 0) { throw new ZeroException(); } aOmega[1] = 2 * Math.PI / xRange; double yMin = Double.POSITIVE_INFINITY; double yMax = Double.NEGATIVE_INFINITY; for (int i = 1; i < observations.length; ++i) { final double y = observations[i].getY(); if (y < yMin) { yMin = y; } if (y > yMax) { yMax = y; } } aOmega[0] = 0.5 * (yMax - yMin); } else { if (c2 == 0) { // In some ill-conditioned cases (cf. MATH-844), the guesser // procedure cannot produce sensible results. throw new MathIllegalStateException(LocalizedFormats.ZERO_DENOMINATOR); } aOmega[0] = FastMath.sqrt(c1 / c2); aOmega[1] = FastMath.sqrt(c2 / c3); } return aOmega; } /** * Estimate a first guess of the phase. * * @param observations Observations, sorted w.r.t. abscissa. * @return the guessed phase. */ private double guessPhi(WeightedObservedPoint[] observations) { // initialize the means double fcMean = 0; double fsMean = 0; double currentX = observations[0].getX(); double currentY = observations[0].getY(); for (int i = 1; i < observations.length; ++i) { // one step forward final double previousX = currentX; final double previousY = currentY; currentX = observations[i].getX(); currentY = observations[i].getY(); final double currentYPrime = (currentY - previousY) / (currentX - previousX); double omegaX = omega * currentX; double cosine = FastMath.cos(omegaX); double sine = FastMath.sin(omegaX); fcMean += omega * currentY * cosine - currentYPrime * sine; fsMean += omega * currentY * sine + currentYPrime * cosine; } return FastMath.atan2(-fsMean, fcMean); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy