All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.fitting.leastsquares.LeastSquaresFactory Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.fitting.leastsquares;

import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.analysis.MultivariateMatrixFunction;
import org.apache.commons.math3.analysis.MultivariateVectorFunction;
import org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem.Evaluation;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.ArrayRealVector;
import org.apache.commons.math3.linear.DiagonalMatrix;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.RealVector;
import org.apache.commons.math3.optim.AbstractOptimizationProblem;
import org.apache.commons.math3.optim.ConvergenceChecker;
import org.apache.commons.math3.optim.PointVectorValuePair;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Incrementor;
import org.apache.commons.math3.util.Pair;

/**
 * A Factory for creating {@link LeastSquaresProblem}s.
 *
 * @since 3.3
 */
public class LeastSquaresFactory {

    /** Prevent instantiation. */
    private LeastSquaresFactory() {}

    /**
     * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem}
     * from the given elements. There will be no weights applied (unit weights).
     *
     * @param model          the model function. Produces the computed values.
     * @param observed       the observed (target) values
     * @param start          the initial guess.
     * @param weight         the weight matrix
     * @param checker        convergence checker
     * @param maxEvaluations the maximum number of times to evaluate the model
     * @param maxIterations  the maximum number to times to iterate in the algorithm
     * @param lazyEvaluation Whether the call to {@link Evaluation#evaluate(RealVector)}
     * will defer the evaluation until access to the value is requested.
     * @param paramValidator Model parameters validator.
     * @return the specified General Least Squares problem.
     *
     * @since 3.4
     */
    public static LeastSquaresProblem create(final MultivariateJacobianFunction model,
                                             final RealVector observed,
                                             final RealVector start,
                                             final RealMatrix weight,
                                             final ConvergenceChecker checker,
                                             final int maxEvaluations,
                                             final int maxIterations,
                                             final boolean lazyEvaluation,
                                             final ParameterValidator paramValidator) {
        final LeastSquaresProblem p = new LocalLeastSquaresProblem(model,
                                                                   observed,
                                                                   start,
                                                                   checker,
                                                                   maxEvaluations,
                                                                   maxIterations,
                                                                   lazyEvaluation,
                                                                   paramValidator);
        if (weight != null) {
            return weightMatrix(p, weight);
        } else {
            return p;
        }
    }

    /**
     * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem}
     * from the given elements. There will be no weights applied (unit weights).
     *
     * @param model          the model function. Produces the computed values.
     * @param observed       the observed (target) values
     * @param start          the initial guess.
     * @param checker        convergence checker
     * @param maxEvaluations the maximum number of times to evaluate the model
     * @param maxIterations  the maximum number to times to iterate in the algorithm
     * @return the specified General Least Squares problem.
     */
    public static LeastSquaresProblem create(final MultivariateJacobianFunction model,
                                             final RealVector observed,
                                             final RealVector start,
                                             final ConvergenceChecker checker,
                                             final int maxEvaluations,
                                             final int maxIterations) {
        return create(model,
                      observed,
                      start,
                      null,
                      checker,
                      maxEvaluations,
                      maxIterations,
                      false,
                      null);
    }

    /**
     * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem}
     * from the given elements.
     *
     * @param model          the model function. Produces the computed values.
     * @param observed       the observed (target) values
     * @param start          the initial guess.
     * @param weight         the weight matrix
     * @param checker        convergence checker
     * @param maxEvaluations the maximum number of times to evaluate the model
     * @param maxIterations  the maximum number to times to iterate in the algorithm
     * @return the specified General Least Squares problem.
     */
    public static LeastSquaresProblem create(final MultivariateJacobianFunction model,
                                             final RealVector observed,
                                             final RealVector start,
                                             final RealMatrix weight,
                                             final ConvergenceChecker checker,
                                             final int maxEvaluations,
                                             final int maxIterations) {
        return weightMatrix(create(model,
                                   observed,
                                   start,
                                   checker,
                                   maxEvaluations,
                                   maxIterations),
                            weight);
    }

    /**
     * Create a {@link org.apache.commons.math3.fitting.leastsquares.LeastSquaresProblem}
     * from the given elements.
     * 

* This factory method is provided for continuity with previous interfaces. Newer * applications should use {@link #create(MultivariateJacobianFunction, RealVector, * RealVector, ConvergenceChecker, int, int)}, or {@link #create(MultivariateJacobianFunction, * RealVector, RealVector, RealMatrix, ConvergenceChecker, int, int)}. * * @param model the model function. Produces the computed values. * @param jacobian the jacobian of the model with respect to the parameters * @param observed the observed (target) values * @param start the initial guess. * @param weight the weight matrix * @param checker convergence checker * @param maxEvaluations the maximum number of times to evaluate the model * @param maxIterations the maximum number to times to iterate in the algorithm * @return the specified General Least Squares problem. */ public static LeastSquaresProblem create(final MultivariateVectorFunction model, final MultivariateMatrixFunction jacobian, final double[] observed, final double[] start, final RealMatrix weight, final ConvergenceChecker checker, final int maxEvaluations, final int maxIterations) { return create(model(model, jacobian), new ArrayRealVector(observed, false), new ArrayRealVector(start, false), weight, checker, maxEvaluations, maxIterations); } /** * Apply a dense weight matrix to the {@link LeastSquaresProblem}. * * @param problem the unweighted problem * @param weights the matrix of weights * @return a new {@link LeastSquaresProblem} with the weights applied. The original * {@code problem} is not modified. */ public static LeastSquaresProblem weightMatrix(final LeastSquaresProblem problem, final RealMatrix weights) { final RealMatrix weightSquareRoot = squareRoot(weights); return new LeastSquaresAdapter(problem) { /** {@inheritDoc} */ @Override public Evaluation evaluate(final RealVector point) { return new DenseWeightedEvaluation(super.evaluate(point), weightSquareRoot); } }; } /** * Apply a diagonal weight matrix to the {@link LeastSquaresProblem}. * * @param problem the unweighted problem * @param weights the diagonal of the weight matrix * @return a new {@link LeastSquaresProblem} with the weights applied. The original * {@code problem} is not modified. */ public static LeastSquaresProblem weightDiagonal(final LeastSquaresProblem problem, final RealVector weights) { // TODO more efficient implementation return weightMatrix(problem, new DiagonalMatrix(weights.toArray())); } /** * Count the evaluations of a particular problem. The {@code counter} will be * incremented every time {@link LeastSquaresProblem#evaluate(RealVector)} is called on * the returned problem. * * @param problem the problem to track. * @param counter the counter to increment. * @return a least squares problem that tracks evaluations */ public static LeastSquaresProblem countEvaluations(final LeastSquaresProblem problem, final Incrementor counter) { return new LeastSquaresAdapter(problem) { /** {@inheritDoc} */ @Override public Evaluation evaluate(final RealVector point) { counter.incrementCount(); return super.evaluate(point); } // Delegate the rest. }; } /** * View a convergence checker specified for a {@link PointVectorValuePair} as one * specified for an {@link Evaluation}. * * @param checker the convergence checker to adapt. * @return a convergence checker that delegates to {@code checker}. */ public static ConvergenceChecker evaluationChecker(final ConvergenceChecker checker) { return new ConvergenceChecker() { /** {@inheritDoc} */ public boolean converged(final int iteration, final Evaluation previous, final Evaluation current) { return checker.converged( iteration, new PointVectorValuePair( previous.getPoint().toArray(), previous.getResiduals().toArray(), false), new PointVectorValuePair( current.getPoint().toArray(), current.getResiduals().toArray(), false) ); } }; } /** * Computes the square-root of the weight matrix. * * @param m Symmetric, positive-definite (weight) matrix. * @return the square-root of the weight matrix. */ private static RealMatrix squareRoot(final RealMatrix m) { if (m instanceof DiagonalMatrix) { final int dim = m.getRowDimension(); final RealMatrix sqrtM = new DiagonalMatrix(dim); for (int i = 0; i < dim; i++) { sqrtM.setEntry(i, i, FastMath.sqrt(m.getEntry(i, i))); } return sqrtM; } else { final EigenDecomposition dec = new EigenDecomposition(m); return dec.getSquareRoot(); } } /** * Combine a {@link MultivariateVectorFunction} with a {@link * MultivariateMatrixFunction} to produce a {@link MultivariateJacobianFunction}. * * @param value the vector value function * @param jacobian the Jacobian function * @return a function that computes both at the same time */ public static MultivariateJacobianFunction model(final MultivariateVectorFunction value, final MultivariateMatrixFunction jacobian) { return new LocalValueAndJacobianFunction(value, jacobian); } /** * Combine a {@link MultivariateVectorFunction} with a {@link * MultivariateMatrixFunction} to produce a {@link MultivariateJacobianFunction}. * * @param value the vector value function * @param jacobian the Jacobian function * @return a function that computes both at the same time */ private static class LocalValueAndJacobianFunction implements ValueAndJacobianFunction { /** Model. */ private final MultivariateVectorFunction value; /** Model's Jacobian. */ private final MultivariateMatrixFunction jacobian; /** * @param value Model function. * @param jacobian Model's Jacobian function. */ LocalValueAndJacobianFunction(final MultivariateVectorFunction value, final MultivariateMatrixFunction jacobian) { this.value = value; this.jacobian = jacobian; } /** {@inheritDoc} */ public Pair value(final RealVector point) { //TODO get array from RealVector without copying? final double[] p = point.toArray(); // Evaluate. return new Pair(computeValue(p), computeJacobian(p)); } /** {@inheritDoc} */ public RealVector computeValue(final double[] params) { return new ArrayRealVector(value.value(params), false); } /** {@inheritDoc} */ public RealMatrix computeJacobian(final double[] params) { return new Array2DRowRealMatrix(jacobian.value(params), false); } } /** * A private, "field" immutable (not "real" immutable) implementation of {@link * LeastSquaresProblem}. * @since 3.3 */ private static class LocalLeastSquaresProblem extends AbstractOptimizationProblem implements LeastSquaresProblem { /** Target values for the model function at optimum. */ private final RealVector target; /** Model function. */ private final MultivariateJacobianFunction model; /** Initial guess. */ private final RealVector start; /** Whether to use lazy evaluation. */ private final boolean lazyEvaluation; /** Model parameters validator. */ private final ParameterValidator paramValidator; /** * Create a {@link LeastSquaresProblem} from the given data. * * @param model the model function * @param target the observed data * @param start the initial guess * @param checker the convergence checker * @param maxEvaluations the allowed evaluations * @param maxIterations the allowed iterations * @param lazyEvaluation Whether the call to {@link Evaluation#evaluate(RealVector)} * will defer the evaluation until access to the value is requested. * @param paramValidator Model parameters validator. */ LocalLeastSquaresProblem(final MultivariateJacobianFunction model, final RealVector target, final RealVector start, final ConvergenceChecker checker, final int maxEvaluations, final int maxIterations, final boolean lazyEvaluation, final ParameterValidator paramValidator) { super(maxEvaluations, maxIterations, checker); this.target = target; this.model = model; this.start = start; this.lazyEvaluation = lazyEvaluation; this.paramValidator = paramValidator; if (lazyEvaluation && !(model instanceof ValueAndJacobianFunction)) { // Lazy evaluation requires that value and Jacobian // can be computed separately. throw new MathIllegalStateException(LocalizedFormats.INVALID_IMPLEMENTATION, model.getClass().getName()); } } /** {@inheritDoc} */ public int getObservationSize() { return target.getDimension(); } /** {@inheritDoc} */ public int getParameterSize() { return start.getDimension(); } /** {@inheritDoc} */ public RealVector getStart() { return start == null ? null : start.copy(); } /** {@inheritDoc} */ public Evaluation evaluate(final RealVector point) { // Copy so optimizer can change point without changing our instance. final RealVector p = paramValidator == null ? point.copy() : paramValidator.validate(point.copy()); if (lazyEvaluation) { return new LazyUnweightedEvaluation((ValueAndJacobianFunction) model, target, p); } else { // Evaluate value and jacobian in one function call. final Pair value = model.value(p); return new UnweightedEvaluation(value.getFirst(), value.getSecond(), target, p); } } /** * Container with the model evaluation at a particular point. */ private static class UnweightedEvaluation extends AbstractEvaluation { /** Point of evaluation. */ private final RealVector point; /** Derivative at point. */ private final RealMatrix jacobian; /** Computed residuals. */ private final RealVector residuals; /** * Create an {@link Evaluation} with no weights. * * @param values the computed function values * @param jacobian the computed function Jacobian * @param target the observed values * @param point the abscissa */ private UnweightedEvaluation(final RealVector values, final RealMatrix jacobian, final RealVector target, final RealVector point) { super(target.getDimension()); this.jacobian = jacobian; this.point = point; this.residuals = target.subtract(values); } /** {@inheritDoc} */ public RealMatrix getJacobian() { return jacobian; } /** {@inheritDoc} */ public RealVector getPoint() { return point; } /** {@inheritDoc} */ public RealVector getResiduals() { return residuals; } } /** * Container with the model lazy evaluation at a particular point. */ private static class LazyUnweightedEvaluation extends AbstractEvaluation { /** Point of evaluation. */ private final RealVector point; /** Model and Jacobian functions. */ private final ValueAndJacobianFunction model; /** Target values for the model function at optimum. */ private final RealVector target; /** * Create an {@link Evaluation} with no weights. * * @param model the model function * @param target the observed values * @param point the abscissa */ private LazyUnweightedEvaluation(final ValueAndJacobianFunction model, final RealVector target, final RealVector point) { super(target.getDimension()); // Safe to cast as long as we control usage of this class. this.model = model; this.point = point; this.target = target; } /** {@inheritDoc} */ public RealMatrix getJacobian() { return model.computeJacobian(point.toArray()); } /** {@inheritDoc} */ public RealVector getPoint() { return point; } /** {@inheritDoc} */ public RealVector getResiduals() { return target.subtract(model.computeValue(point.toArray())); } } } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy