All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.euclidean.oned.IntervalsSet Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.oned;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.partitioning.AbstractRegion;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.BoundaryProjection;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.util.Precision;

/** This class represents a 1D region: a set of intervals.
 * @since 3.0
 */
public class IntervalsSet extends AbstractRegion implements Iterable {

    /** Default value for tolerance. */
    private static final double DEFAULT_TOLERANCE = 1.0e-10;

    /** Build an intervals set representing the whole real line.
     * @param tolerance tolerance below which points are considered identical.
     * @since 3.3
     */
    public IntervalsSet(final double tolerance) {
        super(tolerance);
    }

    /** Build an intervals set corresponding to a single interval.
     * @param lower lower bound of the interval, must be lesser or equal
     * to {@code upper} (may be {@code Double.NEGATIVE_INFINITY})
     * @param upper upper bound of the interval, must be greater or equal
     * to {@code lower} (may be {@code Double.POSITIVE_INFINITY})
     * @param tolerance tolerance below which points are considered identical.
     * @since 3.3
     */
    public IntervalsSet(final double lower, final double upper, final double tolerance) {
        super(buildTree(lower, upper, tolerance), tolerance);
    }

    /** Build an intervals set from an inside/outside BSP tree.
     * 

The leaf nodes of the BSP tree must have a * {@code Boolean} attribute representing the inside status of * the corresponding cell (true for inside cells, false for outside * cells). In order to avoid building too many small objects, it is * recommended to use the predefined constants * {@code Boolean.TRUE} and {@code Boolean.FALSE}

* @param tree inside/outside BSP tree representing the intervals set * @param tolerance tolerance below which points are considered identical. * @since 3.3 */ public IntervalsSet(final BSPTree tree, final double tolerance) { super(tree, tolerance); } /** Build an intervals set from a Boundary REPresentation (B-rep). *

The boundary is provided as a collection of {@link * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the * interior part of the region on its minus side and the exterior on * its plus side.

*

The boundary elements can be in any order, and can form * several non-connected sets (like for example polygons with holes * or a set of disjoints polyhedrons considered as a whole). In * fact, the elements do not even need to be connected together * (their topological connections are not used here). However, if the * boundary does not really separate an inside open from an outside * open (open having here its topological meaning), then subsequent * calls to the {@link * org.apache.commons.math3.geometry.partitioning.Region#checkPoint(org.apache.commons.math3.geometry.Point) * checkPoint} method will not be meaningful anymore.

*

If the boundary is empty, the region will represent the whole * space.

* @param boundary collection of boundary elements * @param tolerance tolerance below which points are considered identical. * @since 3.3 */ public IntervalsSet(final Collection> boundary, final double tolerance) { super(boundary, tolerance); } /** Build an intervals set representing the whole real line. * @deprecated as of 3.1 replaced with {@link #IntervalsSet(double)} */ @Deprecated public IntervalsSet() { this(DEFAULT_TOLERANCE); } /** Build an intervals set corresponding to a single interval. * @param lower lower bound of the interval, must be lesser or equal * to {@code upper} (may be {@code Double.NEGATIVE_INFINITY}) * @param upper upper bound of the interval, must be greater or equal * to {@code lower} (may be {@code Double.POSITIVE_INFINITY}) * @deprecated as of 3.3 replaced with {@link #IntervalsSet(double, double, double)} */ @Deprecated public IntervalsSet(final double lower, final double upper) { this(lower, upper, DEFAULT_TOLERANCE); } /** Build an intervals set from an inside/outside BSP tree. *

The leaf nodes of the BSP tree must have a * {@code Boolean} attribute representing the inside status of * the corresponding cell (true for inside cells, false for outside * cells). In order to avoid building too many small objects, it is * recommended to use the predefined constants * {@code Boolean.TRUE} and {@code Boolean.FALSE}

* @param tree inside/outside BSP tree representing the intervals set * @deprecated as of 3.3, replaced with {@link #IntervalsSet(BSPTree, double)} */ @Deprecated public IntervalsSet(final BSPTree tree) { this(tree, DEFAULT_TOLERANCE); } /** Build an intervals set from a Boundary REPresentation (B-rep). *

The boundary is provided as a collection of {@link * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the * interior part of the region on its minus side and the exterior on * its plus side.

*

The boundary elements can be in any order, and can form * several non-connected sets (like for example polygons with holes * or a set of disjoints polyhedrons considered as a whole). In * fact, the elements do not even need to be connected together * (their topological connections are not used here). However, if the * boundary does not really separate an inside open from an outside * open (open having here its topological meaning), then subsequent * calls to the {@link * org.apache.commons.math3.geometry.partitioning.Region#checkPoint(org.apache.commons.math3.geometry.Point) * checkPoint} method will not be meaningful anymore.

*

If the boundary is empty, the region will represent the whole * space.

* @param boundary collection of boundary elements * @deprecated as of 3.3, replaced with {@link #IntervalsSet(Collection, double)} */ @Deprecated public IntervalsSet(final Collection> boundary) { this(boundary, DEFAULT_TOLERANCE); } /** Build an inside/outside tree representing a single interval. * @param lower lower bound of the interval, must be lesser or equal * to {@code upper} (may be {@code Double.NEGATIVE_INFINITY}) * @param upper upper bound of the interval, must be greater or equal * to {@code lower} (may be {@code Double.POSITIVE_INFINITY}) * @param tolerance tolerance below which points are considered identical. * @return the built tree */ private static BSPTree buildTree(final double lower, final double upper, final double tolerance) { if (Double.isInfinite(lower) && (lower < 0)) { if (Double.isInfinite(upper) && (upper > 0)) { // the tree must cover the whole real line return new BSPTree(Boolean.TRUE); } // the tree must be open on the negative infinity side final SubHyperplane upperCut = new OrientedPoint(new Vector1D(upper), true, tolerance).wholeHyperplane(); return new BSPTree(upperCut, new BSPTree(Boolean.FALSE), new BSPTree(Boolean.TRUE), null); } final SubHyperplane lowerCut = new OrientedPoint(new Vector1D(lower), false, tolerance).wholeHyperplane(); if (Double.isInfinite(upper) && (upper > 0)) { // the tree must be open on the positive infinity side return new BSPTree(lowerCut, new BSPTree(Boolean.FALSE), new BSPTree(Boolean.TRUE), null); } // the tree must be bounded on the two sides final SubHyperplane upperCut = new OrientedPoint(new Vector1D(upper), true, tolerance).wholeHyperplane(); return new BSPTree(lowerCut, new BSPTree(Boolean.FALSE), new BSPTree(upperCut, new BSPTree(Boolean.FALSE), new BSPTree(Boolean.TRUE), null), null); } /** {@inheritDoc} */ @Override public IntervalsSet buildNew(final BSPTree tree) { return new IntervalsSet(tree, getTolerance()); } /** {@inheritDoc} */ @Override protected void computeGeometricalProperties() { if (getTree(false).getCut() == null) { setBarycenter((Point) Vector1D.NaN); setSize(((Boolean) getTree(false).getAttribute()) ? Double.POSITIVE_INFINITY : 0); } else { double size = 0.0; double sum = 0.0; for (final Interval interval : asList()) { size += interval.getSize(); sum += interval.getSize() * interval.getBarycenter(); } setSize(size); if (Double.isInfinite(size)) { setBarycenter((Point) Vector1D.NaN); } else if (size >= Precision.SAFE_MIN) { setBarycenter((Point) new Vector1D(sum / size)); } else { setBarycenter((Point) ((OrientedPoint) getTree(false).getCut().getHyperplane()).getLocation()); } } } /** Get the lowest value belonging to the instance. * @return lowest value belonging to the instance * ({@code Double.NEGATIVE_INFINITY} if the instance doesn't * have any low bound, {@code Double.POSITIVE_INFINITY} if the * instance is empty) */ public double getInf() { BSPTree node = getTree(false); double inf = Double.POSITIVE_INFINITY; while (node.getCut() != null) { final OrientedPoint op = (OrientedPoint) node.getCut().getHyperplane(); inf = op.getLocation().getX(); node = op.isDirect() ? node.getMinus() : node.getPlus(); } return ((Boolean) node.getAttribute()) ? Double.NEGATIVE_INFINITY : inf; } /** Get the highest value belonging to the instance. * @return highest value belonging to the instance * ({@code Double.POSITIVE_INFINITY} if the instance doesn't * have any high bound, {@code Double.NEGATIVE_INFINITY} if the * instance is empty) */ public double getSup() { BSPTree node = getTree(false); double sup = Double.NEGATIVE_INFINITY; while (node.getCut() != null) { final OrientedPoint op = (OrientedPoint) node.getCut().getHyperplane(); sup = op.getLocation().getX(); node = op.isDirect() ? node.getPlus() : node.getMinus(); } return ((Boolean) node.getAttribute()) ? Double.POSITIVE_INFINITY : sup; } /** {@inheritDoc} * @since 3.3 */ @Override public BoundaryProjection projectToBoundary(final Point point) { // get position of test point final double x = ((Vector1D) point).getX(); double previous = Double.NEGATIVE_INFINITY; for (final double[] a : this) { if (x < a[0]) { // the test point lies between the previous and the current intervals // offset will be positive final double previousOffset = x - previous; final double currentOffset = a[0] - x; if (previousOffset < currentOffset) { return new BoundaryProjection(point, finiteOrNullPoint(previous), previousOffset); } else { return new BoundaryProjection(point, finiteOrNullPoint(a[0]), currentOffset); } } else if (x <= a[1]) { // the test point lies within the current interval // offset will be negative final double offset0 = a[0] - x; final double offset1 = x - a[1]; if (offset0 < offset1) { return new BoundaryProjection(point, finiteOrNullPoint(a[1]), offset1); } else { return new BoundaryProjection(point, finiteOrNullPoint(a[0]), offset0); } } previous = a[1]; } // the test point if past the last sub-interval return new BoundaryProjection(point, finiteOrNullPoint(previous), x - previous); } /** Build a finite point. * @param x abscissa of the point * @return a new point for finite abscissa, null otherwise */ private Vector1D finiteOrNullPoint(final double x) { return Double.isInfinite(x) ? null : new Vector1D(x); } /** Build an ordered list of intervals representing the instance. *

This method builds this intervals set as an ordered list of * {@link Interval Interval} elements. If the intervals set has no * lower limit, the first interval will have its low bound equal to * {@code Double.NEGATIVE_INFINITY}. If the intervals set has * no upper limit, the last interval will have its upper bound equal * to {@code Double.POSITIVE_INFINITY}. An empty tree will * build an empty list while a tree representing the whole real line * will build a one element list with both bounds being * infinite.

* @return a new ordered list containing {@link Interval Interval} * elements */ public List asList() { final List list = new ArrayList(); for (final double[] a : this) { list.add(new Interval(a[0], a[1])); } return list; } /** Get the first leaf node of a tree. * @param root tree root * @return first leaf node */ private BSPTree getFirstLeaf(final BSPTree root) { if (root.getCut() == null) { return root; } // find the smallest internal node BSPTree smallest = null; for (BSPTree n = root; n != null; n = previousInternalNode(n)) { smallest = n; } return leafBefore(smallest); } /** Get the node corresponding to the first interval boundary. * @return smallest internal node, * or null if there are no internal nodes (i.e. the set is either empty or covers the real line) */ private BSPTree getFirstIntervalBoundary() { // start search at the tree root BSPTree node = getTree(false); if (node.getCut() == null) { return null; } // walk tree until we find the smallest internal node node = getFirstLeaf(node).getParent(); // walk tree until we find an interval boundary while (node != null && !(isIntervalStart(node) || isIntervalEnd(node))) { node = nextInternalNode(node); } return node; } /** Check if an internal node corresponds to the start abscissa of an interval. * @param node internal node to check * @return true if the node corresponds to the start abscissa of an interval */ private boolean isIntervalStart(final BSPTree node) { if ((Boolean) leafBefore(node).getAttribute()) { // it has an inside cell before it, it may end an interval but not start it return false; } if (!(Boolean) leafAfter(node).getAttribute()) { // it has an outside cell after it, it is a dummy cut away from real intervals return false; } // the cell has an outside before and an inside after it // it is the start of an interval return true; } /** Check if an internal node corresponds to the end abscissa of an interval. * @param node internal node to check * @return true if the node corresponds to the end abscissa of an interval */ private boolean isIntervalEnd(final BSPTree node) { if (!(Boolean) leafBefore(node).getAttribute()) { // it has an outside cell before it, it may start an interval but not end it return false; } if ((Boolean) leafAfter(node).getAttribute()) { // it has an inside cell after it, it is a dummy cut in the middle of an interval return false; } // the cell has an inside before and an outside after it // it is the end of an interval return true; } /** Get the next internal node. * @param node current internal node * @return next internal node in ascending order, or null * if this is the last internal node */ private BSPTree nextInternalNode(BSPTree node) { if (childAfter(node).getCut() != null) { // the next node is in the sub-tree return leafAfter(node).getParent(); } // there is nothing left deeper in the tree, we backtrack while (isAfterParent(node)) { node = node.getParent(); } return node.getParent(); } /** Get the previous internal node. * @param node current internal node * @return previous internal node in ascending order, or null * if this is the first internal node */ private BSPTree previousInternalNode(BSPTree node) { if (childBefore(node).getCut() != null) { // the next node is in the sub-tree return leafBefore(node).getParent(); } // there is nothing left deeper in the tree, we backtrack while (isBeforeParent(node)) { node = node.getParent(); } return node.getParent(); } /** Find the leaf node just before an internal node. * @param node internal node at which the sub-tree starts * @return leaf node just before the internal node */ private BSPTree leafBefore(BSPTree node) { node = childBefore(node); while (node.getCut() != null) { node = childAfter(node); } return node; } /** Find the leaf node just after an internal node. * @param node internal node at which the sub-tree starts * @return leaf node just after the internal node */ private BSPTree leafAfter(BSPTree node) { node = childAfter(node); while (node.getCut() != null) { node = childBefore(node); } return node; } /** Check if a node is the child before its parent in ascending order. * @param node child node considered * @return true is the node has a parent end is before it in ascending order */ private boolean isBeforeParent(final BSPTree node) { final BSPTree parent = node.getParent(); if (parent == null) { return false; } else { return node == childBefore(parent); } } /** Check if a node is the child after its parent in ascending order. * @param node child node considered * @return true is the node has a parent end is after it in ascending order */ private boolean isAfterParent(final BSPTree node) { final BSPTree parent = node.getParent(); if (parent == null) { return false; } else { return node == childAfter(parent); } } /** Find the child node just before an internal node. * @param node internal node at which the sub-tree starts * @return child node just before the internal node */ private BSPTree childBefore(BSPTree node) { if (isDirect(node)) { // smaller abscissas are on minus side, larger abscissas are on plus side return node.getMinus(); } else { // smaller abscissas are on plus side, larger abscissas are on minus side return node.getPlus(); } } /** Find the child node just after an internal node. * @param node internal node at which the sub-tree starts * @return child node just after the internal node */ private BSPTree childAfter(BSPTree node) { if (isDirect(node)) { // smaller abscissas are on minus side, larger abscissas are on plus side return node.getPlus(); } else { // smaller abscissas are on plus side, larger abscissas are on minus side return node.getMinus(); } } /** Check if an internal node has a direct oriented point. * @param node internal node to check * @return true if the oriented point is direct */ private boolean isDirect(final BSPTree node) { return ((OrientedPoint) node.getCut().getHyperplane()).isDirect(); } /** Get the abscissa of an internal node. * @param node internal node to check * @return abscissa */ private double getAngle(final BSPTree node) { return ((OrientedPoint) node.getCut().getHyperplane()).getLocation().getX(); } /** {@inheritDoc} *

* The iterator returns the limit values of sub-intervals in ascending order. *

*

* The iterator does not support the optional {@code remove} operation. *

* @since 3.3 */ public Iterator iterator() { return new SubIntervalsIterator(); } /** Local iterator for sub-intervals. */ private class SubIntervalsIterator implements Iterator { /** Current node. */ private BSPTree current; /** Sub-interval no yet returned. */ private double[] pending; /** Simple constructor. */ SubIntervalsIterator() { current = getFirstIntervalBoundary(); if (current == null) { // all the leaf tree nodes share the same inside/outside status if ((Boolean) getFirstLeaf(getTree(false)).getAttribute()) { // it is an inside node, it represents the full real line pending = new double[] { Double.NEGATIVE_INFINITY, Double.POSITIVE_INFINITY }; } else { pending = null; } } else if (isIntervalEnd(current)) { // the first boundary is an interval end, // so the first interval starts at infinity pending = new double[] { Double.NEGATIVE_INFINITY, getAngle(current) }; } else { selectPending(); } } /** Walk the tree to select the pending sub-interval. */ private void selectPending() { // look for the start of the interval BSPTree start = current; while (start != null && !isIntervalStart(start)) { start = nextInternalNode(start); } if (start == null) { // we have exhausted the iterator current = null; pending = null; return; } // look for the end of the interval BSPTree end = start; while (end != null && !isIntervalEnd(end)) { end = nextInternalNode(end); } if (end != null) { // we have identified the interval pending = new double[] { getAngle(start), getAngle(end) }; // prepare search for next interval current = end; } else { // the final interval is open toward infinity pending = new double[] { getAngle(start), Double.POSITIVE_INFINITY }; // there won't be any other intervals current = null; } } /** {@inheritDoc} */ public boolean hasNext() { return pending != null; } /** {@inheritDoc} */ public double[] next() { if (pending == null) { throw new NoSuchElementException(); } final double[] next = pending; selectPending(); return next; } /** {@inheritDoc} */ public void remove() { throw new UnsupportedOperationException(); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy