All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.euclidean.twod.SubLine Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.euclidean.twod;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.euclidean.oned.Euclidean1D;
import org.apache.commons.math3.geometry.euclidean.oned.Interval;
import org.apache.commons.math3.geometry.euclidean.oned.IntervalsSet;
import org.apache.commons.math3.geometry.euclidean.oned.OrientedPoint;
import org.apache.commons.math3.geometry.euclidean.oned.Vector1D;
import org.apache.commons.math3.geometry.partitioning.AbstractSubHyperplane;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.Hyperplane;
import org.apache.commons.math3.geometry.partitioning.Region;
import org.apache.commons.math3.geometry.partitioning.Region.Location;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.util.FastMath;

/** This class represents a sub-hyperplane for {@link Line}.
 * @since 3.0
 */
public class SubLine extends AbstractSubHyperplane {

    /** Default value for tolerance. */
    private static final double DEFAULT_TOLERANCE = 1.0e-10;

    /** Simple constructor.
     * @param hyperplane underlying hyperplane
     * @param remainingRegion remaining region of the hyperplane
     */
    public SubLine(final Hyperplane hyperplane,
                   final Region remainingRegion) {
        super(hyperplane, remainingRegion);
    }

    /** Create a sub-line from two endpoints.
     * @param start start point
     * @param end end point
     * @param tolerance tolerance below which points are considered identical
     * @since 3.3
     */
    public SubLine(final Vector2D start, final Vector2D end, final double tolerance) {
        super(new Line(start, end, tolerance), buildIntervalSet(start, end, tolerance));
    }

    /** Create a sub-line from two endpoints.
     * @param start start point
     * @param end end point
     * @deprecated as of 3.3, replaced with {@link #SubLine(Vector2D, Vector2D, double)}
     */
    @Deprecated
    public SubLine(final Vector2D start, final Vector2D end) {
        this(start, end, DEFAULT_TOLERANCE);
    }

    /** Create a sub-line from a segment.
     * @param segment single segment forming the sub-line
     */
    public SubLine(final Segment segment) {
        super(segment.getLine(),
              buildIntervalSet(segment.getStart(), segment.getEnd(), segment.getLine().getTolerance()));
    }

    /** Get the endpoints of the sub-line.
     * 

* A subline may be any arbitrary number of disjoints segments, so the endpoints * are provided as a list of endpoint pairs. Each element of the list represents * one segment, and each segment contains a start point at index 0 and an end point * at index 1. If the sub-line is unbounded in the negative infinity direction, * the start point of the first segment will have infinite coordinates. If the * sub-line is unbounded in the positive infinity direction, the end point of the * last segment will have infinite coordinates. So a sub-line covering the whole * line will contain just one row and both elements of this row will have infinite * coordinates. If the sub-line is empty, the returned list will contain 0 segments. *

* @return list of segments endpoints */ public List getSegments() { final Line line = (Line) getHyperplane(); final List list = ((IntervalsSet) getRemainingRegion()).asList(); final List segments = new ArrayList(list.size()); for (final Interval interval : list) { final Vector2D start = line.toSpace((Point) new Vector1D(interval.getInf())); final Vector2D end = line.toSpace((Point) new Vector1D(interval.getSup())); segments.add(new Segment(start, end, line)); } return segments; } /** Get the intersection of the instance and another sub-line. *

* This method is related to the {@link Line#intersection(Line) * intersection} method in the {@link Line Line} class, but in addition * to compute the point along infinite lines, it also checks the point * lies on both sub-line ranges. *

* @param subLine other sub-line which may intersect instance * @param includeEndPoints if true, endpoints are considered to belong to * instance (i.e. they are closed sets) and may be returned, otherwise endpoints * are considered to not belong to instance (i.e. they are open sets) and intersection * occurring on endpoints lead to null being returned * @return the intersection point if there is one, null if the sub-lines don't intersect */ public Vector2D intersection(final SubLine subLine, final boolean includeEndPoints) { // retrieve the underlying lines Line line1 = (Line) getHyperplane(); Line line2 = (Line) subLine.getHyperplane(); // compute the intersection on infinite line Vector2D v2D = line1.intersection(line2); if (v2D == null) { return null; } // check location of point with respect to first sub-line Location loc1 = getRemainingRegion().checkPoint(line1.toSubSpace((Point) v2D)); // check location of point with respect to second sub-line Location loc2 = subLine.getRemainingRegion().checkPoint(line2.toSubSpace((Point) v2D)); if (includeEndPoints) { return ((loc1 != Location.OUTSIDE) && (loc2 != Location.OUTSIDE)) ? v2D : null; } else { return ((loc1 == Location.INSIDE) && (loc2 == Location.INSIDE)) ? v2D : null; } } /** Build an interval set from two points. * @param start start point * @param end end point * @param tolerance tolerance below which points are considered identical * @return an interval set */ private static IntervalsSet buildIntervalSet(final Vector2D start, final Vector2D end, final double tolerance) { final Line line = new Line(start, end, tolerance); return new IntervalsSet(line.toSubSpace((Point) start).getX(), line.toSubSpace((Point) end).getX(), tolerance); } /** {@inheritDoc} */ @Override protected AbstractSubHyperplane buildNew(final Hyperplane hyperplane, final Region remainingRegion) { return new SubLine(hyperplane, remainingRegion); } /** {@inheritDoc} */ @Override public SplitSubHyperplane split(final Hyperplane hyperplane) { final Line thisLine = (Line) getHyperplane(); final Line otherLine = (Line) hyperplane; final Vector2D crossing = thisLine.intersection(otherLine); final double tolerance = thisLine.getTolerance(); if (crossing == null) { // the lines are parallel final double global = otherLine.getOffset(thisLine); if (global < -tolerance) { return new SplitSubHyperplane(null, this); } else if (global > tolerance) { return new SplitSubHyperplane(this, null); } else { return new SplitSubHyperplane(null, null); } } // the lines do intersect final boolean direct = FastMath.sin(thisLine.getAngle() - otherLine.getAngle()) < 0; final Vector1D x = thisLine.toSubSpace((Point) crossing); final SubHyperplane subPlus = new OrientedPoint(x, !direct, tolerance).wholeHyperplane(); final SubHyperplane subMinus = new OrientedPoint(x, direct, tolerance).wholeHyperplane(); final BSPTree splitTree = getRemainingRegion().getTree(false).split(subMinus); final BSPTree plusTree = getRemainingRegion().isEmpty(splitTree.getPlus()) ? new BSPTree(Boolean.FALSE) : new BSPTree(subPlus, new BSPTree(Boolean.FALSE), splitTree.getPlus(), null); final BSPTree minusTree = getRemainingRegion().isEmpty(splitTree.getMinus()) ? new BSPTree(Boolean.FALSE) : new BSPTree(subMinus, new BSPTree(Boolean.FALSE), splitTree.getMinus(), null); return new SplitSubHyperplane(new SubLine(thisLine.copySelf(), new IntervalsSet(plusTree, tolerance)), new SubLine(thisLine.copySelf(), new IntervalsSet(minusTree, tolerance))); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy