All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.partitioning.utilities.AVLTree Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.partitioning.utilities;

/** This class implements AVL trees.
 *
 * 

The purpose of this class is to sort elements while allowing * duplicate elements (i.e. such that {@code a.equals(b)} is * true). The {@code SortedSet} interface does not allow this, so * a specific class is needed. Null elements are not allowed.

* *

Since the {@code equals} method is not sufficient to * differentiate elements, the {@link #delete delete} method is * implemented using the equality operator.

* *

In order to clearly mark the methods provided here do not have * the same semantics as the ones specified in the * {@code SortedSet} interface, different names are used * ({@code add} has been replaced by {@link #insert insert} and * {@code remove} has been replaced by {@link #delete * delete}).

* *

This class is based on the C implementation Georg Kraml has put * in the public domain. Unfortunately, his page seems not * to exist any more.

* * @param the type of the elements * * @since 3.0 * @deprecated as of 3.4, this class is not used anymore and considered * to be out of scope of Apache Commons Math */ @Deprecated public class AVLTree> { /** Top level node. */ private Node top; /** Build an empty tree. */ public AVLTree() { top = null; } /** Insert an element in the tree. * @param element element to insert (silently ignored if null) */ public void insert(final T element) { if (element != null) { if (top == null) { top = new Node(element, null); } else { top.insert(element); } } } /** Delete an element from the tree. *

The element is deleted only if there is a node {@code n} * containing exactly the element instance specified, i.e. for which * {@code n.getElement() == element}. This is purposely * different from the specification of the * {@code java.util.Set} {@code remove} method (in fact, * this is the reason why a specific class has been developed).

* @param element element to delete (silently ignored if null) * @return true if the element was deleted from the tree */ public boolean delete(final T element) { if (element != null) { for (Node node = getNotSmaller(element); node != null; node = node.getNext()) { // loop over all elements neither smaller nor larger // than the specified one if (node.element == element) { node.delete(); return true; } else if (node.element.compareTo(element) > 0) { // all the remaining elements are known to be larger, // the element is not in the tree return false; } } } return false; } /** Check if the tree is empty. * @return true if the tree is empty */ public boolean isEmpty() { return top == null; } /** Get the number of elements of the tree. * @return number of elements contained in the tree */ public int size() { return (top == null) ? 0 : top.size(); } /** Get the node whose element is the smallest one in the tree. * @return the tree node containing the smallest element in the tree * or null if the tree is empty * @see #getLargest * @see #getNotSmaller * @see #getNotLarger * @see Node#getPrevious * @see Node#getNext */ public Node getSmallest() { return (top == null) ? null : top.getSmallest(); } /** Get the node whose element is the largest one in the tree. * @return the tree node containing the largest element in the tree * or null if the tree is empty * @see #getSmallest * @see #getNotSmaller * @see #getNotLarger * @see Node#getPrevious * @see Node#getNext */ public Node getLargest() { return (top == null) ? null : top.getLargest(); } /** Get the node whose element is not smaller than the reference object. * @param reference reference object (may not be in the tree) * @return the tree node containing the smallest element not smaller * than the reference object or null if either the tree is empty or * all its elements are smaller than the reference object * @see #getSmallest * @see #getLargest * @see #getNotLarger * @see Node#getPrevious * @see Node#getNext */ public Node getNotSmaller(final T reference) { Node candidate = null; for (Node node = top; node != null;) { if (node.element.compareTo(reference) < 0) { if (node.right == null) { return candidate; } node = node.right; } else { candidate = node; if (node.left == null) { return candidate; } node = node.left; } } return null; } /** Get the node whose element is not larger than the reference object. * @param reference reference object (may not be in the tree) * @return the tree node containing the largest element not larger * than the reference object (in which case the node is guaranteed * not to be empty) or null if either the tree is empty or all its * elements are larger than the reference object * @see #getSmallest * @see #getLargest * @see #getNotSmaller * @see Node#getPrevious * @see Node#getNext */ public Node getNotLarger(final T reference) { Node candidate = null; for (Node node = top; node != null;) { if (node.element.compareTo(reference) > 0) { if (node.left == null) { return candidate; } node = node.left; } else { candidate = node; if (node.right == null) { return candidate; } node = node.right; } } return null; } /** Enum for tree skew factor. */ private enum Skew { /** Code for left high trees. */ LEFT_HIGH, /** Code for right high trees. */ RIGHT_HIGH, /** Code for Skew.BALANCED trees. */ BALANCED; } /** This class implements AVL trees nodes. *

AVL tree nodes implement all the logical structure of the * tree. Nodes are created by the {@link AVLTree AVLTree} class.

*

The nodes are not independant from each other but must obey * specific balancing constraints and the tree structure is * rearranged as elements are inserted or deleted from the tree. The * creation, modification and tree-related navigation methods have * therefore restricted access. Only the order-related navigation, * reading and delete methods are public.

* @see AVLTree */ public class Node { /** Element contained in the current node. */ private T element; /** Left sub-tree. */ private Node left; /** Right sub-tree. */ private Node right; /** Parent tree. */ private Node parent; /** Skew factor. */ private Skew skew; /** Build a node for a specified element. * @param element element * @param parent parent node */ Node(final T element, final Node parent) { this.element = element; left = null; right = null; this.parent = parent; skew = Skew.BALANCED; } /** Get the contained element. * @return element contained in the node */ public T getElement() { return element; } /** Get the number of elements of the tree rooted at this node. * @return number of elements contained in the tree rooted at this node */ int size() { return 1 + ((left == null) ? 0 : left.size()) + ((right == null) ? 0 : right.size()); } /** Get the node whose element is the smallest one in the tree * rooted at this node. * @return the tree node containing the smallest element in the * tree rooted at this node or null if the tree is empty * @see #getLargest */ Node getSmallest() { Node node = this; while (node.left != null) { node = node.left; } return node; } /** Get the node whose element is the largest one in the tree * rooted at this node. * @return the tree node containing the largest element in the * tree rooted at this node or null if the tree is empty * @see #getSmallest */ Node getLargest() { Node node = this; while (node.right != null) { node = node.right; } return node; } /** Get the node containing the next smaller or equal element. * @return node containing the next smaller or equal element or * null if there is no smaller or equal element in the tree * @see #getNext */ public Node getPrevious() { if (left != null) { final Node node = left.getLargest(); if (node != null) { return node; } } for (Node node = this; node.parent != null; node = node.parent) { if (node != node.parent.left) { return node.parent; } } return null; } /** Get the node containing the next larger or equal element. * @return node containing the next larger or equal element (in * which case the node is guaranteed not to be empty) or null if * there is no larger or equal element in the tree * @see #getPrevious */ public Node getNext() { if (right != null) { final Node node = right.getSmallest(); if (node != null) { return node; } } for (Node node = this; node.parent != null; node = node.parent) { if (node != node.parent.right) { return node.parent; } } return null; } /** Insert an element in a sub-tree. * @param newElement element to insert * @return true if the parent tree should be re-Skew.BALANCED */ boolean insert(final T newElement) { if (newElement.compareTo(this.element) < 0) { // the inserted element is smaller than the node if (left == null) { left = new Node(newElement, this); return rebalanceLeftGrown(); } return left.insert(newElement) ? rebalanceLeftGrown() : false; } // the inserted element is equal to or greater than the node if (right == null) { right = new Node(newElement, this); return rebalanceRightGrown(); } return right.insert(newElement) ? rebalanceRightGrown() : false; } /** Delete the node from the tree. */ public void delete() { if ((parent == null) && (left == null) && (right == null)) { // this was the last node, the tree is now empty element = null; top = null; } else { Node node; Node child; boolean leftShrunk; if ((left == null) && (right == null)) { node = this; element = null; leftShrunk = node == node.parent.left; child = null; } else { node = (left != null) ? left.getLargest() : right.getSmallest(); element = node.element; leftShrunk = node == node.parent.left; child = (node.left != null) ? node.left : node.right; } node = node.parent; if (leftShrunk) { node.left = child; } else { node.right = child; } if (child != null) { child.parent = node; } while (leftShrunk ? node.rebalanceLeftShrunk() : node.rebalanceRightShrunk()) { if (node.parent == null) { return; } leftShrunk = node == node.parent.left; node = node.parent; } } } /** Re-balance the instance as left sub-tree has grown. * @return true if the parent tree should be reSkew.BALANCED too */ private boolean rebalanceLeftGrown() { switch (skew) { case LEFT_HIGH: if (left.skew == Skew.LEFT_HIGH) { rotateCW(); skew = Skew.BALANCED; right.skew = Skew.BALANCED; } else { final Skew s = left.right.skew; left.rotateCCW(); rotateCW(); switch(s) { case LEFT_HIGH: left.skew = Skew.BALANCED; right.skew = Skew.RIGHT_HIGH; break; case RIGHT_HIGH: left.skew = Skew.LEFT_HIGH; right.skew = Skew.BALANCED; break; default: left.skew = Skew.BALANCED; right.skew = Skew.BALANCED; } skew = Skew.BALANCED; } return false; case RIGHT_HIGH: skew = Skew.BALANCED; return false; default: skew = Skew.LEFT_HIGH; return true; } } /** Re-balance the instance as right sub-tree has grown. * @return true if the parent tree should be reSkew.BALANCED too */ private boolean rebalanceRightGrown() { switch (skew) { case LEFT_HIGH: skew = Skew.BALANCED; return false; case RIGHT_HIGH: if (right.skew == Skew.RIGHT_HIGH) { rotateCCW(); skew = Skew.BALANCED; left.skew = Skew.BALANCED; } else { final Skew s = right.left.skew; right.rotateCW(); rotateCCW(); switch (s) { case LEFT_HIGH: left.skew = Skew.BALANCED; right.skew = Skew.RIGHT_HIGH; break; case RIGHT_HIGH: left.skew = Skew.LEFT_HIGH; right.skew = Skew.BALANCED; break; default: left.skew = Skew.BALANCED; right.skew = Skew.BALANCED; } skew = Skew.BALANCED; } return false; default: skew = Skew.RIGHT_HIGH; return true; } } /** Re-balance the instance as left sub-tree has shrunk. * @return true if the parent tree should be reSkew.BALANCED too */ private boolean rebalanceLeftShrunk() { switch (skew) { case LEFT_HIGH: skew = Skew.BALANCED; return true; case RIGHT_HIGH: if (right.skew == Skew.RIGHT_HIGH) { rotateCCW(); skew = Skew.BALANCED; left.skew = Skew.BALANCED; return true; } else if (right.skew == Skew.BALANCED) { rotateCCW(); skew = Skew.LEFT_HIGH; left.skew = Skew.RIGHT_HIGH; return false; } else { final Skew s = right.left.skew; right.rotateCW(); rotateCCW(); switch (s) { case LEFT_HIGH: left.skew = Skew.BALANCED; right.skew = Skew.RIGHT_HIGH; break; case RIGHT_HIGH: left.skew = Skew.LEFT_HIGH; right.skew = Skew.BALANCED; break; default: left.skew = Skew.BALANCED; right.skew = Skew.BALANCED; } skew = Skew.BALANCED; return true; } default: skew = Skew.RIGHT_HIGH; return false; } } /** Re-balance the instance as right sub-tree has shrunk. * @return true if the parent tree should be reSkew.BALANCED too */ private boolean rebalanceRightShrunk() { switch (skew) { case RIGHT_HIGH: skew = Skew.BALANCED; return true; case LEFT_HIGH: if (left.skew == Skew.LEFT_HIGH) { rotateCW(); skew = Skew.BALANCED; right.skew = Skew.BALANCED; return true; } else if (left.skew == Skew.BALANCED) { rotateCW(); skew = Skew.RIGHT_HIGH; right.skew = Skew.LEFT_HIGH; return false; } else { final Skew s = left.right.skew; left.rotateCCW(); rotateCW(); switch (s) { case LEFT_HIGH: left.skew = Skew.BALANCED; right.skew = Skew.RIGHT_HIGH; break; case RIGHT_HIGH: left.skew = Skew.LEFT_HIGH; right.skew = Skew.BALANCED; break; default: left.skew = Skew.BALANCED; right.skew = Skew.BALANCED; } skew = Skew.BALANCED; return true; } default: skew = Skew.LEFT_HIGH; return false; } } /** Perform a clockwise rotation rooted at the instance. *

The skew factor are not updated by this method, they * must be updated by the caller

*/ private void rotateCW() { final T tmpElt = element; element = left.element; left.element = tmpElt; final Node tmpNode = left; left = tmpNode.left; tmpNode.left = tmpNode.right; tmpNode.right = right; right = tmpNode; if (left != null) { left.parent = this; } if (right.right != null) { right.right.parent = right; } } /** Perform a counter-clockwise rotation rooted at the instance. *

The skew factor are not updated by this method, they * must be updated by the caller

*/ private void rotateCCW() { final T tmpElt = element; element = right.element; right.element = tmpElt; final Node tmpNode = right; right = tmpNode.right; tmpNode.right = tmpNode.left; tmpNode.left = left; left = tmpNode; if (right != null) { right.parent = this; } if (left.left != null) { left.left.parent = left; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy