All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.geometry.spherical.oned.ArcsSet Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.geometry.spherical.oned;

import java.util.ArrayList;
import java.util.Collection;
import java.util.Iterator;
import java.util.List;
import java.util.NoSuchElementException;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.NumberIsTooLargeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.geometry.Point;
import org.apache.commons.math3.geometry.partitioning.AbstractRegion;
import org.apache.commons.math3.geometry.partitioning.BSPTree;
import org.apache.commons.math3.geometry.partitioning.BoundaryProjection;
import org.apache.commons.math3.geometry.partitioning.Side;
import org.apache.commons.math3.geometry.partitioning.SubHyperplane;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;
import org.apache.commons.math3.util.Precision;

/** This class represents a region of a circle: a set of arcs.
 * 

* Note that due to the wrapping around \(2 \pi\), barycenter is * ill-defined here. It was defined only in order to fulfill * the requirements of the {@link * org.apache.commons.math3.geometry.partitioning.Region Region} * interface, but its use is discouraged. *

* @since 3.3 */ public class ArcsSet extends AbstractRegion implements Iterable { /** Build an arcs set representing the whole circle. * @param tolerance tolerance below which close sub-arcs are merged together */ public ArcsSet(final double tolerance) { super(tolerance); } /** Build an arcs set corresponding to a single arc. *

* If either {@code lower} is equals to {@code upper} or * the interval exceeds \( 2 \pi \), the arc is considered * to be the full circle and its initial defining boundaries * will be forgotten. {@code lower} is not allowed to be greater * than {@code upper} (an exception is thrown in this case). *

* @param lower lower bound of the arc * @param upper upper bound of the arc * @param tolerance tolerance below which close sub-arcs are merged together * @exception NumberIsTooLargeException if lower is greater than upper */ public ArcsSet(final double lower, final double upper, final double tolerance) throws NumberIsTooLargeException { super(buildTree(lower, upper, tolerance), tolerance); } /** Build an arcs set from an inside/outside BSP tree. *

The leaf nodes of the BSP tree must have a * {@code Boolean} attribute representing the inside status of * the corresponding cell (true for inside cells, false for outside * cells). In order to avoid building too many small objects, it is * recommended to use the predefined constants * {@code Boolean.TRUE} and {@code Boolean.FALSE}

* @param tree inside/outside BSP tree representing the arcs set * @param tolerance tolerance below which close sub-arcs are merged together * @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not * consistent across the \( 0, 2 \pi \) crossing */ public ArcsSet(final BSPTree tree, final double tolerance) throws InconsistentStateAt2PiWrapping { super(tree, tolerance); check2PiConsistency(); } /** Build an arcs set from a Boundary REPresentation (B-rep). *

The boundary is provided as a collection of {@link * SubHyperplane sub-hyperplanes}. Each sub-hyperplane has the * interior part of the region on its minus side and the exterior on * its plus side.

*

The boundary elements can be in any order, and can form * several non-connected sets (like for example polygons with holes * or a set of disjoints polyhedrons considered as a whole). In * fact, the elements do not even need to be connected together * (their topological connections are not used here). However, if the * boundary does not really separate an inside open from an outside * open (open having here its topological meaning), then subsequent * calls to the {@link * org.apache.commons.math3.geometry.partitioning.Region#checkPoint(org.apache.commons.math3.geometry.Point) * checkPoint} method will not be meaningful anymore.

*

If the boundary is empty, the region will represent the whole * space.

* @param boundary collection of boundary elements * @param tolerance tolerance below which close sub-arcs are merged together * @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not * consistent across the \( 0, 2 \pi \) crossing */ public ArcsSet(final Collection> boundary, final double tolerance) throws InconsistentStateAt2PiWrapping { super(boundary, tolerance); check2PiConsistency(); } /** Build an inside/outside tree representing a single arc. * @param lower lower angular bound of the arc * @param upper upper angular bound of the arc * @param tolerance tolerance below which close sub-arcs are merged together * @return the built tree * @exception NumberIsTooLargeException if lower is greater than upper */ private static BSPTree buildTree(final double lower, final double upper, final double tolerance) throws NumberIsTooLargeException { if (Precision.equals(lower, upper, 0) || (upper - lower) >= MathUtils.TWO_PI) { // the tree must cover the whole circle return new BSPTree(Boolean.TRUE); } else if (lower > upper) { throw new NumberIsTooLargeException(LocalizedFormats.ENDPOINTS_NOT_AN_INTERVAL, lower, upper, true); } // this is a regular arc, covering only part of the circle final double normalizedLower = MathUtils.normalizeAngle(lower, FastMath.PI); final double normalizedUpper = normalizedLower + (upper - lower); final SubHyperplane lowerCut = new LimitAngle(new S1Point(normalizedLower), false, tolerance).wholeHyperplane(); if (normalizedUpper <= MathUtils.TWO_PI) { // simple arc starting after 0 and ending before 2 \pi final SubHyperplane upperCut = new LimitAngle(new S1Point(normalizedUpper), true, tolerance).wholeHyperplane(); return new BSPTree(lowerCut, new BSPTree(Boolean.FALSE), new BSPTree(upperCut, new BSPTree(Boolean.FALSE), new BSPTree(Boolean.TRUE), null), null); } else { // arc wrapping around 2 \pi final SubHyperplane upperCut = new LimitAngle(new S1Point(normalizedUpper - MathUtils.TWO_PI), true, tolerance).wholeHyperplane(); return new BSPTree(lowerCut, new BSPTree(upperCut, new BSPTree(Boolean.FALSE), new BSPTree(Boolean.TRUE), null), new BSPTree(Boolean.TRUE), null); } } /** Check consistency. * @exception InconsistentStateAt2PiWrapping if the tree leaf nodes are not * consistent across the \( 0, 2 \pi \) crossing */ private void check2PiConsistency() throws InconsistentStateAt2PiWrapping { // start search at the tree root BSPTree root = getTree(false); if (root.getCut() == null) { return; } // find the inside/outside state before the smallest internal node final Boolean stateBefore = (Boolean) getFirstLeaf(root).getAttribute(); // find the inside/outside state after the largest internal node final Boolean stateAfter = (Boolean) getLastLeaf(root).getAttribute(); if (stateBefore ^ stateAfter) { throw new InconsistentStateAt2PiWrapping(); } } /** Get the first leaf node of a tree. * @param root tree root * @return first leaf node (i.e. node corresponding to the region just after 0.0 radians) */ private BSPTree getFirstLeaf(final BSPTree root) { if (root.getCut() == null) { return root; } // find the smallest internal node BSPTree smallest = null; for (BSPTree n = root; n != null; n = previousInternalNode(n)) { smallest = n; } return leafBefore(smallest); } /** Get the last leaf node of a tree. * @param root tree root * @return last leaf node (i.e. node corresponding to the region just before \( 2 \pi \) radians) */ private BSPTree getLastLeaf(final BSPTree root) { if (root.getCut() == null) { return root; } // find the largest internal node BSPTree largest = null; for (BSPTree n = root; n != null; n = nextInternalNode(n)) { largest = n; } return leafAfter(largest); } /** Get the node corresponding to the first arc start. * @return smallest internal node (i.e. first after 0.0 radians, in trigonometric direction), * or null if there are no internal nodes (i.e. the set is either empty or covers the full circle) */ private BSPTree getFirstArcStart() { // start search at the tree root BSPTree node = getTree(false); if (node.getCut() == null) { return null; } // walk tree until we find the smallest internal node node = getFirstLeaf(node).getParent(); // walk tree until we find an arc start while (node != null && !isArcStart(node)) { node = nextInternalNode(node); } return node; } /** Check if an internal node corresponds to the start angle of an arc. * @param node internal node to check * @return true if the node corresponds to the start angle of an arc */ private boolean isArcStart(final BSPTree node) { if ((Boolean) leafBefore(node).getAttribute()) { // it has an inside cell before it, it may end an arc but not start it return false; } if (!(Boolean) leafAfter(node).getAttribute()) { // it has an outside cell after it, it is a dummy cut away from real arcs return false; } // the cell has an outside before and an inside after it // it is the start of an arc return true; } /** Check if an internal node corresponds to the end angle of an arc. * @param node internal node to check * @return true if the node corresponds to the end angle of an arc */ private boolean isArcEnd(final BSPTree node) { if (!(Boolean) leafBefore(node).getAttribute()) { // it has an outside cell before it, it may start an arc but not end it return false; } if ((Boolean) leafAfter(node).getAttribute()) { // it has an inside cell after it, it is a dummy cut in the middle of an arc return false; } // the cell has an inside before and an outside after it // it is the end of an arc return true; } /** Get the next internal node. * @param node current internal node * @return next internal node in trigonometric order, or null * if this is the last internal node */ private BSPTree nextInternalNode(BSPTree node) { if (childAfter(node).getCut() != null) { // the next node is in the sub-tree return leafAfter(node).getParent(); } // there is nothing left deeper in the tree, we backtrack while (isAfterParent(node)) { node = node.getParent(); } return node.getParent(); } /** Get the previous internal node. * @param node current internal node * @return previous internal node in trigonometric order, or null * if this is the first internal node */ private BSPTree previousInternalNode(BSPTree node) { if (childBefore(node).getCut() != null) { // the next node is in the sub-tree return leafBefore(node).getParent(); } // there is nothing left deeper in the tree, we backtrack while (isBeforeParent(node)) { node = node.getParent(); } return node.getParent(); } /** Find the leaf node just before an internal node. * @param node internal node at which the sub-tree starts * @return leaf node just before the internal node */ private BSPTree leafBefore(BSPTree node) { node = childBefore(node); while (node.getCut() != null) { node = childAfter(node); } return node; } /** Find the leaf node just after an internal node. * @param node internal node at which the sub-tree starts * @return leaf node just after the internal node */ private BSPTree leafAfter(BSPTree node) { node = childAfter(node); while (node.getCut() != null) { node = childBefore(node); } return node; } /** Check if a node is the child before its parent in trigonometric order. * @param node child node considered * @return true is the node has a parent end is before it in trigonometric order */ private boolean isBeforeParent(final BSPTree node) { final BSPTree parent = node.getParent(); if (parent == null) { return false; } else { return node == childBefore(parent); } } /** Check if a node is the child after its parent in trigonometric order. * @param node child node considered * @return true is the node has a parent end is after it in trigonometric order */ private boolean isAfterParent(final BSPTree node) { final BSPTree parent = node.getParent(); if (parent == null) { return false; } else { return node == childAfter(parent); } } /** Find the child node just before an internal node. * @param node internal node at which the sub-tree starts * @return child node just before the internal node */ private BSPTree childBefore(BSPTree node) { if (isDirect(node)) { // smaller angles are on minus side, larger angles are on plus side return node.getMinus(); } else { // smaller angles are on plus side, larger angles are on minus side return node.getPlus(); } } /** Find the child node just after an internal node. * @param node internal node at which the sub-tree starts * @return child node just after the internal node */ private BSPTree childAfter(BSPTree node) { if (isDirect(node)) { // smaller angles are on minus side, larger angles are on plus side return node.getPlus(); } else { // smaller angles are on plus side, larger angles are on minus side return node.getMinus(); } } /** Check if an internal node has a direct limit angle. * @param node internal node to check * @return true if the limit angle is direct */ private boolean isDirect(final BSPTree node) { return ((LimitAngle) node.getCut().getHyperplane()).isDirect(); } /** Get the limit angle of an internal node. * @param node internal node to check * @return limit angle */ private double getAngle(final BSPTree node) { return ((LimitAngle) node.getCut().getHyperplane()).getLocation().getAlpha(); } /** {@inheritDoc} */ @Override public ArcsSet buildNew(final BSPTree tree) { return new ArcsSet(tree, getTolerance()); } /** {@inheritDoc} */ @Override protected void computeGeometricalProperties() { if (getTree(false).getCut() == null) { setBarycenter(S1Point.NaN); setSize(((Boolean) getTree(false).getAttribute()) ? MathUtils.TWO_PI : 0); } else { double size = 0.0; double sum = 0.0; for (final double[] a : this) { final double length = a[1] - a[0]; size += length; sum += length * (a[0] + a[1]); } setSize(size); if (Precision.equals(size, MathUtils.TWO_PI, 0)) { setBarycenter(S1Point.NaN); } else if (size >= Precision.SAFE_MIN) { setBarycenter(new S1Point(sum / (2 * size))); } else { final LimitAngle limit = (LimitAngle) getTree(false).getCut().getHyperplane(); setBarycenter(limit.getLocation()); } } } /** {@inheritDoc} * @since 3.3 */ @Override public BoundaryProjection projectToBoundary(final Point point) { // get position of test point final double alpha = ((S1Point) point).getAlpha(); boolean wrapFirst = false; double first = Double.NaN; double previous = Double.NaN; for (final double[] a : this) { if (Double.isNaN(first)) { // remember the first angle in case we need it later first = a[0]; } if (!wrapFirst) { if (alpha < a[0]) { // the test point lies between the previous and the current arcs // offset will be positive if (Double.isNaN(previous)) { // we need to wrap around the circle wrapFirst = true; } else { final double previousOffset = alpha - previous; final double currentOffset = a[0] - alpha; if (previousOffset < currentOffset) { return new BoundaryProjection(point, new S1Point(previous), previousOffset); } else { return new BoundaryProjection(point, new S1Point(a[0]), currentOffset); } } } else if (alpha <= a[1]) { // the test point lies within the current arc // offset will be negative final double offset0 = a[0] - alpha; final double offset1 = alpha - a[1]; if (offset0 < offset1) { return new BoundaryProjection(point, new S1Point(a[1]), offset1); } else { return new BoundaryProjection(point, new S1Point(a[0]), offset0); } } } previous = a[1]; } if (Double.isNaN(previous)) { // there are no points at all in the arcs set return new BoundaryProjection(point, null, MathUtils.TWO_PI); } else { // the test point if before first arc and after last arc, // somewhere around the 0/2 \pi crossing if (wrapFirst) { // the test point is between 0 and first final double previousOffset = alpha - (previous - MathUtils.TWO_PI); final double currentOffset = first - alpha; if (previousOffset < currentOffset) { return new BoundaryProjection(point, new S1Point(previous), previousOffset); } else { return new BoundaryProjection(point, new S1Point(first), currentOffset); } } else { // the test point is between last and 2\pi final double previousOffset = alpha - previous; final double currentOffset = first + MathUtils.TWO_PI - alpha; if (previousOffset < currentOffset) { return new BoundaryProjection(point, new S1Point(previous), previousOffset); } else { return new BoundaryProjection(point, new S1Point(first), currentOffset); } } } } /** Build an ordered list of arcs representing the instance. *

This method builds this arcs set as an ordered list of * {@link Arc Arc} elements. An empty tree will build an empty list * while a tree representing the whole circle will build a one * element list with bounds set to \( 0 and 2 \pi \).

* @return a new ordered list containing {@link Arc Arc} elements */ public List asList() { final List list = new ArrayList(); for (final double[] a : this) { list.add(new Arc(a[0], a[1], getTolerance())); } return list; } /** {@inheritDoc} *

* The iterator returns the limit angles pairs of sub-arcs in trigonometric order. *

*

* The iterator does not support the optional {@code remove} operation. *

*/ public Iterator iterator() { return new SubArcsIterator(); } /** Local iterator for sub-arcs. */ private class SubArcsIterator implements Iterator { /** Start of the first arc. */ private final BSPTree firstStart; /** Current node. */ private BSPTree current; /** Sub-arc no yet returned. */ private double[] pending; /** Simple constructor. */ SubArcsIterator() { firstStart = getFirstArcStart(); current = firstStart; if (firstStart == null) { // all the leaf tree nodes share the same inside/outside status if ((Boolean) getFirstLeaf(getTree(false)).getAttribute()) { // it is an inside node, it represents the full circle pending = new double[] { 0, MathUtils.TWO_PI }; } else { pending = null; } } else { selectPending(); } } /** Walk the tree to select the pending sub-arc. */ private void selectPending() { // look for the start of the arc BSPTree start = current; while (start != null && !isArcStart(start)) { start = nextInternalNode(start); } if (start == null) { // we have exhausted the iterator current = null; pending = null; return; } // look for the end of the arc BSPTree end = start; while (end != null && !isArcEnd(end)) { end = nextInternalNode(end); } if (end != null) { // we have identified the arc pending = new double[] { getAngle(start), getAngle(end) }; // prepare search for next arc current = end; } else { // the final arc wraps around 2\pi, its end is before the first start end = firstStart; while (end != null && !isArcEnd(end)) { end = previousInternalNode(end); } if (end == null) { // this should never happen throw new MathInternalError(); } // we have identified the last arc pending = new double[] { getAngle(start), getAngle(end) + MathUtils.TWO_PI }; // there won't be any other arcs current = null; } } /** {@inheritDoc} */ public boolean hasNext() { return pending != null; } /** {@inheritDoc} */ public double[] next() { if (pending == null) { throw new NoSuchElementException(); } final double[] next = pending; selectPending(); return next; } /** {@inheritDoc} */ public void remove() { throw new UnsupportedOperationException(); } } /** Compute the relative position of the instance with respect * to an arc. *

* The {@link Side#MINUS} side of the arc is the one covered by the arc. *

* @param arc arc to check instance against * @return one of {@link Side#PLUS}, {@link Side#MINUS}, {@link Side#BOTH} * or {@link Side#HYPER} * @deprecated as of 3.6, replaced with {@link #split(Arc)}.{@link Split#getSide()} */ @Deprecated public Side side(final Arc arc) { return split(arc).getSide(); } /** Split the instance in two parts by an arc. * @param arc splitting arc * @return an object containing both the part of the instance * on the plus side of the arc and the part of the * instance on the minus side of the arc */ public Split split(final Arc arc) { final List minus = new ArrayList(); final List plus = new ArrayList(); final double reference = FastMath.PI + arc.getInf(); final double arcLength = arc.getSup() - arc.getInf(); for (final double[] a : this) { final double syncedStart = MathUtils.normalizeAngle(a[0], reference) - arc.getInf(); final double arcOffset = a[0] - syncedStart; final double syncedEnd = a[1] - arcOffset; if (syncedStart < arcLength) { // the start point a[0] is in the minus part of the arc minus.add(a[0]); if (syncedEnd > arcLength) { // the end point a[1] is past the end of the arc // so we leave the minus part and enter the plus part final double minusToPlus = arcLength + arcOffset; minus.add(minusToPlus); plus.add(minusToPlus); if (syncedEnd > MathUtils.TWO_PI) { // in fact the end point a[1] goes far enough that we // leave the plus part of the arc and enter the minus part again final double plusToMinus = MathUtils.TWO_PI + arcOffset; plus.add(plusToMinus); minus.add(plusToMinus); minus.add(a[1]); } else { // the end point a[1] is in the plus part of the arc plus.add(a[1]); } } else { // the end point a[1] is in the minus part of the arc minus.add(a[1]); } } else { // the start point a[0] is in the plus part of the arc plus.add(a[0]); if (syncedEnd > MathUtils.TWO_PI) { // the end point a[1] wraps around to the start of the arc // so we leave the plus part and enter the minus part final double plusToMinus = MathUtils.TWO_PI + arcOffset; plus.add(plusToMinus); minus.add(plusToMinus); if (syncedEnd > MathUtils.TWO_PI + arcLength) { // in fact the end point a[1] goes far enough that we // leave the minus part of the arc and enter the plus part again final double minusToPlus = MathUtils.TWO_PI + arcLength + arcOffset; minus.add(minusToPlus); plus.add(minusToPlus); plus.add(a[1]); } else { // the end point a[1] is in the minus part of the arc minus.add(a[1]); } } else { // the end point a[1] is in the plus part of the arc plus.add(a[1]); } } } return new Split(createSplitPart(plus), createSplitPart(minus)); } /** Add an arc limit to a BSP tree under construction. * @param tree BSP tree under construction * @param alpha arc limit * @param isStart if true, the limit is the start of an arc */ private void addArcLimit(final BSPTree tree, final double alpha, final boolean isStart) { final LimitAngle limit = new LimitAngle(new S1Point(alpha), !isStart, getTolerance()); final BSPTree node = tree.getCell(limit.getLocation(), getTolerance()); if (node.getCut() != null) { // this should never happen throw new MathInternalError(); } node.insertCut(limit); node.setAttribute(null); node.getPlus().setAttribute(Boolean.FALSE); node.getMinus().setAttribute(Boolean.TRUE); } /** Create a split part. *

* As per construction, the list of limit angles is known to have * an even number of entries, with start angles at even indices and * end angles at odd indices. *

* @param limits limit angles of the split part * @return split part (may be null) */ private ArcsSet createSplitPart(final List limits) { if (limits.isEmpty()) { return null; } else { // collapse close limit angles for (int i = 0; i < limits.size(); ++i) { final int j = (i + 1) % limits.size(); final double lA = limits.get(i); final double lB = MathUtils.normalizeAngle(limits.get(j), lA); if (FastMath.abs(lB - lA) <= getTolerance()) { // the two limits are too close to each other, we remove both of them if (j > 0) { // regular case, the two entries are consecutive ones limits.remove(j); limits.remove(i); i = i - 1; } else { // special case, i the the last entry and j is the first entry // we have wrapped around list end final double lEnd = limits.remove(limits.size() - 1); final double lStart = limits.remove(0); if (limits.isEmpty()) { // the ends were the only limits, is it a full circle or an empty circle? if (lEnd - lStart > FastMath.PI) { // it was full circle return new ArcsSet(new BSPTree(Boolean.TRUE), getTolerance()); } else { // it was an empty circle return null; } } else { // we have removed the first interval start, so our list // currently starts with an interval end, which is wrong // we need to move this interval end to the end of the list limits.add(limits.remove(0) + MathUtils.TWO_PI); } } } } // build the tree by adding all angular sectors BSPTree tree = new BSPTree(Boolean.FALSE); for (int i = 0; i < limits.size() - 1; i += 2) { addArcLimit(tree, limits.get(i), true); addArcLimit(tree, limits.get(i + 1), false); } if (tree.getCut() == null) { // we did not insert anything return null; } return new ArcsSet(tree, getTolerance()); } } /** Class holding the results of the {@link #split split} method. */ public static class Split { /** Part of the arcs set on the plus side of the splitting arc. */ private final ArcsSet plus; /** Part of the arcs set on the minus side of the splitting arc. */ private final ArcsSet minus; /** Build a Split from its parts. * @param plus part of the arcs set on the plus side of the * splitting arc * @param minus part of the arcs set on the minus side of the * splitting arc */ private Split(final ArcsSet plus, final ArcsSet minus) { this.plus = plus; this.minus = minus; } /** Get the part of the arcs set on the plus side of the splitting arc. * @return part of the arcs set on the plus side of the splitting arc */ public ArcsSet getPlus() { return plus; } /** Get the part of the arcs set on the minus side of the splitting arc. * @return part of the arcs set on the minus side of the splitting arc */ public ArcsSet getMinus() { return minus; } /** Get the side of the split arc with respect to its splitter. * @return {@link Side#PLUS} if only {@link #getPlus()} returns non-null, * {@link Side#MINUS} if only {@link #getMinus()} returns non-null, * {@link Side#BOTH} if both {@link #getPlus()} and {@link #getMinus()} * return non-null or {@link Side#HYPER} if both {@link #getPlus()} and * {@link #getMinus()} return null * @since 3.6 */ public Side getSide() { if (plus != null) { if (minus != null) { return Side.BOTH; } else { return Side.PLUS; } } else if (minus != null) { return Side.MINUS; } else { return Side.HYPER; } } } /** Specialized exception for inconsistent BSP tree state inconsistency. *

* This exception is thrown at {@link ArcsSet} construction time when the * {@link org.apache.commons.math3.geometry.partitioning.Region.Location inside/outside} * state is not consistent at the 0, \(2 \pi \) crossing. *

*/ public static class InconsistentStateAt2PiWrapping extends MathIllegalArgumentException { /** Serializable UID. */ private static final long serialVersionUID = 20140107L; /** Simple constructor. */ public InconsistentStateAt2PiWrapping() { super(LocalizedFormats.INCONSISTENT_STATE_AT_2_PI_WRAPPING); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy