All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ml.neuralnet.twod.NeuronSquareMesh2D Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.neuralnet.twod;

import java.util.List;
import java.util.ArrayList;
import java.util.Iterator;
import java.io.Serializable;
import java.io.ObjectInputStream;
import org.apache.commons.math3.ml.neuralnet.Neuron;
import org.apache.commons.math3.ml.neuralnet.Network;
import org.apache.commons.math3.ml.neuralnet.FeatureInitializer;
import org.apache.commons.math3.ml.neuralnet.SquareNeighbourhood;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.MathInternalError;

/**
 * Neural network with the topology of a two-dimensional surface.
 * Each neuron defines one surface element.
 * 
* This network is primarily intended to represent a * * Self Organizing Feature Map. * * @see org.apache.commons.math3.ml.neuralnet.sofm * @since 3.3 */ public class NeuronSquareMesh2D implements Iterable, Serializable { /** Serial version ID */ private static final long serialVersionUID = 1L; /** Underlying network. */ private final Network network; /** Number of rows. */ private final int numberOfRows; /** Number of columns. */ private final int numberOfColumns; /** Wrap. */ private final boolean wrapRows; /** Wrap. */ private final boolean wrapColumns; /** Neighbourhood type. */ private final SquareNeighbourhood neighbourhood; /** * Mapping of the 2D coordinates (in the rectangular mesh) to * the neuron identifiers (attributed by the {@link #network} * instance). */ private final long[][] identifiers; /** * Horizontal (along row) direction. * @since 3.6 */ public enum HorizontalDirection { /** Column at the right of the current column. */ RIGHT, /** Current column. */ CENTER, /** Column at the left of the current column. */ LEFT, } /** * Vertical (along column) direction. * @since 3.6 */ public enum VerticalDirection { /** Row above the current row. */ UP, /** Current row. */ CENTER, /** Row below the current row. */ DOWN, } /** * Constructor with restricted access, solely used for deserialization. * * @param wrapRowDim Whether to wrap the first dimension (i.e the first * and last neurons will be linked together). * @param wrapColDim Whether to wrap the second dimension (i.e the first * and last neurons will be linked together). * @param neighbourhoodType Neighbourhood type. * @param featuresList Arrays that will initialize the features sets of * the network's neurons. * @throws NumberIsTooSmallException if {@code numRows < 2} or * {@code numCols < 2}. */ NeuronSquareMesh2D(boolean wrapRowDim, boolean wrapColDim, SquareNeighbourhood neighbourhoodType, double[][][] featuresList) { numberOfRows = featuresList.length; numberOfColumns = featuresList[0].length; if (numberOfRows < 2) { throw new NumberIsTooSmallException(numberOfRows, 2, true); } if (numberOfColumns < 2) { throw new NumberIsTooSmallException(numberOfColumns, 2, true); } wrapRows = wrapRowDim; wrapColumns = wrapColDim; neighbourhood = neighbourhoodType; final int fLen = featuresList[0][0].length; network = new Network(0, fLen); identifiers = new long[numberOfRows][numberOfColumns]; // Add neurons. for (int i = 0; i < numberOfRows; i++) { for (int j = 0; j < numberOfColumns; j++) { identifiers[i][j] = network.createNeuron(featuresList[i][j]); } } // Add links. createLinks(); } /** * Creates a two-dimensional network composed of square cells: * Each neuron not located on the border of the mesh has four * neurons linked to it. *
* The links are bi-directional. *
* The topology of the network can also be a cylinder (if one * of the dimensions is wrapped) or a torus (if both dimensions * are wrapped). * * @param numRows Number of neurons in the first dimension. * @param wrapRowDim Whether to wrap the first dimension (i.e the first * and last neurons will be linked together). * @param numCols Number of neurons in the second dimension. * @param wrapColDim Whether to wrap the second dimension (i.e the first * and last neurons will be linked together). * @param neighbourhoodType Neighbourhood type. * @param featureInit Array of functions that will initialize the * corresponding element of the features set of each newly created * neuron. In particular, the size of this array defines the size of * feature set. * @throws NumberIsTooSmallException if {@code numRows < 2} or * {@code numCols < 2}. */ public NeuronSquareMesh2D(int numRows, boolean wrapRowDim, int numCols, boolean wrapColDim, SquareNeighbourhood neighbourhoodType, FeatureInitializer[] featureInit) { if (numRows < 2) { throw new NumberIsTooSmallException(numRows, 2, true); } if (numCols < 2) { throw new NumberIsTooSmallException(numCols, 2, true); } numberOfRows = numRows; wrapRows = wrapRowDim; numberOfColumns = numCols; wrapColumns = wrapColDim; neighbourhood = neighbourhoodType; identifiers = new long[numberOfRows][numberOfColumns]; final int fLen = featureInit.length; network = new Network(0, fLen); // Add neurons. for (int i = 0; i < numRows; i++) { for (int j = 0; j < numCols; j++) { final double[] features = new double[fLen]; for (int fIndex = 0; fIndex < fLen; fIndex++) { features[fIndex] = featureInit[fIndex].value(); } identifiers[i][j] = network.createNeuron(features); } } // Add links. createLinks(); } /** * Constructor with restricted access, solely used for making a * {@link #copy() deep copy}. * * @param wrapRowDim Whether to wrap the first dimension (i.e the first * and last neurons will be linked together). * @param wrapColDim Whether to wrap the second dimension (i.e the first * and last neurons will be linked together). * @param neighbourhoodType Neighbourhood type. * @param net Underlying network. * @param idGrid Neuron identifiers. */ private NeuronSquareMesh2D(boolean wrapRowDim, boolean wrapColDim, SquareNeighbourhood neighbourhoodType, Network net, long[][] idGrid) { numberOfRows = idGrid.length; numberOfColumns = idGrid[0].length; wrapRows = wrapRowDim; wrapColumns = wrapColDim; neighbourhood = neighbourhoodType; network = net; identifiers = idGrid; } /** * Performs a deep copy of this instance. * Upon return, the copied and original instances will be independent: * Updating one will not affect the other. * * @return a new instance with the same state as this instance. * @since 3.6 */ public synchronized NeuronSquareMesh2D copy() { final long[][] idGrid = new long[numberOfRows][numberOfColumns]; for (int r = 0; r < numberOfRows; r++) { for (int c = 0; c < numberOfColumns; c++) { idGrid[r][c] = identifiers[r][c]; } } return new NeuronSquareMesh2D(wrapRows, wrapColumns, neighbourhood, network.copy(), idGrid); } /** * {@inheritDoc} * @since 3.6 */ public Iterator iterator() { return network.iterator(); } /** * Retrieves the underlying network. * A reference is returned (enabling, for example, the network to be * trained). * This also implies that calling methods that modify the {@link Network} * topology may cause this class to become inconsistent. * * @return the network. */ public Network getNetwork() { return network; } /** * Gets the number of neurons in each row of this map. * * @return the number of rows. */ public int getNumberOfRows() { return numberOfRows; } /** * Gets the number of neurons in each column of this map. * * @return the number of column. */ public int getNumberOfColumns() { return numberOfColumns; } /** * Retrieves the neuron at location {@code (i, j)} in the map. * The neuron at position {@code (0, 0)} is located at the upper-left * corner of the map. * * @param i Row index. * @param j Column index. * @return the neuron at {@code (i, j)}. * @throws OutOfRangeException if {@code i} or {@code j} is * out of range. * * @see #getNeuron(int,int,HorizontalDirection,VerticalDirection) */ public Neuron getNeuron(int i, int j) { if (i < 0 || i >= numberOfRows) { throw new OutOfRangeException(i, 0, numberOfRows - 1); } if (j < 0 || j >= numberOfColumns) { throw new OutOfRangeException(j, 0, numberOfColumns - 1); } return network.getNeuron(identifiers[i][j]); } /** * Retrieves the neuron at {@code (location[0], location[1])} in the map. * The neuron at position {@code (0, 0)} is located at the upper-left * corner of the map. * * @param row Row index. * @param col Column index. * @param alongRowDir Direction along the given {@code row} (i.e. an * offset will be added to the given column index. * @param alongColDir Direction along the given {@code col} (i.e. an * offset will be added to the given row index. * @return the neuron at the requested location, or {@code null} if * the location is not on the map. * * @see #getNeuron(int,int) */ public Neuron getNeuron(int row, int col, HorizontalDirection alongRowDir, VerticalDirection alongColDir) { final int[] location = getLocation(row, col, alongRowDir, alongColDir); return location == null ? null : getNeuron(location[0], location[1]); } /** * Computes the location of a neighbouring neuron. * It will return {@code null} if the resulting location is not part * of the map. * Position {@code (0, 0)} is at the upper-left corner of the map. * * @param row Row index. * @param col Column index. * @param alongRowDir Direction along the given {@code row} (i.e. an * offset will be added to the given column index. * @param alongColDir Direction along the given {@code col} (i.e. an * offset will be added to the given row index. * @return an array of length 2 containing the indices of the requested * location, or {@code null} if that location is not part of the map. * * @see #getNeuron(int,int) */ private int[] getLocation(int row, int col, HorizontalDirection alongRowDir, VerticalDirection alongColDir) { final int colOffset; switch (alongRowDir) { case LEFT: colOffset = -1; break; case RIGHT: colOffset = 1; break; case CENTER: colOffset = 0; break; default: // Should never happen. throw new MathInternalError(); } int colIndex = col + colOffset; if (wrapColumns) { if (colIndex < 0) { colIndex += numberOfColumns; } else { colIndex %= numberOfColumns; } } final int rowOffset; switch (alongColDir) { case UP: rowOffset = -1; break; case DOWN: rowOffset = 1; break; case CENTER: rowOffset = 0; break; default: // Should never happen. throw new MathInternalError(); } int rowIndex = row + rowOffset; if (wrapRows) { if (rowIndex < 0) { rowIndex += numberOfRows; } else { rowIndex %= numberOfRows; } } if (rowIndex < 0 || rowIndex >= numberOfRows || colIndex < 0 || colIndex >= numberOfColumns) { return null; } else { return new int[] { rowIndex, colIndex }; } } /** * Creates the neighbour relationships between neurons. */ private void createLinks() { // "linkEnd" will store the identifiers of the "neighbours". final List linkEnd = new ArrayList(); final int iLast = numberOfRows - 1; final int jLast = numberOfColumns - 1; for (int i = 0; i < numberOfRows; i++) { for (int j = 0; j < numberOfColumns; j++) { linkEnd.clear(); switch (neighbourhood) { case MOORE: // Add links to "diagonal" neighbours. if (i > 0) { if (j > 0) { linkEnd.add(identifiers[i - 1][j - 1]); } if (j < jLast) { linkEnd.add(identifiers[i - 1][j + 1]); } } if (i < iLast) { if (j > 0) { linkEnd.add(identifiers[i + 1][j - 1]); } if (j < jLast) { linkEnd.add(identifiers[i + 1][j + 1]); } } if (wrapRows) { if (i == 0) { if (j > 0) { linkEnd.add(identifiers[iLast][j - 1]); } if (j < jLast) { linkEnd.add(identifiers[iLast][j + 1]); } } else if (i == iLast) { if (j > 0) { linkEnd.add(identifiers[0][j - 1]); } if (j < jLast) { linkEnd.add(identifiers[0][j + 1]); } } } if (wrapColumns) { if (j == 0) { if (i > 0) { linkEnd.add(identifiers[i - 1][jLast]); } if (i < iLast) { linkEnd.add(identifiers[i + 1][jLast]); } } else if (j == jLast) { if (i > 0) { linkEnd.add(identifiers[i - 1][0]); } if (i < iLast) { linkEnd.add(identifiers[i + 1][0]); } } } if (wrapRows && wrapColumns) { if (i == 0 && j == 0) { linkEnd.add(identifiers[iLast][jLast]); } else if (i == 0 && j == jLast) { linkEnd.add(identifiers[iLast][0]); } else if (i == iLast && j == 0) { linkEnd.add(identifiers[0][jLast]); } else if (i == iLast && j == jLast) { linkEnd.add(identifiers[0][0]); } } // Case falls through since the "Moore" neighbourhood // also contains the neurons that belong to the "Von // Neumann" neighbourhood. // fallthru (CheckStyle) case VON_NEUMANN: // Links to preceding and following "row". if (i > 0) { linkEnd.add(identifiers[i - 1][j]); } if (i < iLast) { linkEnd.add(identifiers[i + 1][j]); } if (wrapRows) { if (i == 0) { linkEnd.add(identifiers[iLast][j]); } else if (i == iLast) { linkEnd.add(identifiers[0][j]); } } // Links to preceding and following "column". if (j > 0) { linkEnd.add(identifiers[i][j - 1]); } if (j < jLast) { linkEnd.add(identifiers[i][j + 1]); } if (wrapColumns) { if (j == 0) { linkEnd.add(identifiers[i][jLast]); } else if (j == jLast) { linkEnd.add(identifiers[i][0]); } } break; default: throw new MathInternalError(); // Cannot happen. } final Neuron aNeuron = network.getNeuron(identifiers[i][j]); for (long b : linkEnd) { final Neuron bNeuron = network.getNeuron(b); // Link to all neighbours. // The reverse links will be added as the loop proceeds. network.addLink(aNeuron, bNeuron); } } } } /** * Prevents proxy bypass. * * @param in Input stream. */ private void readObject(ObjectInputStream in) { throw new IllegalStateException(); } /** * Custom serialization. * * @return the proxy instance that will be actually serialized. */ private Object writeReplace() { final double[][][] featuresList = new double[numberOfRows][numberOfColumns][]; for (int i = 0; i < numberOfRows; i++) { for (int j = 0; j < numberOfColumns; j++) { featuresList[i][j] = getNeuron(i, j).getFeatures(); } } return new SerializationProxy(wrapRows, wrapColumns, neighbourhood, featuresList); } /** * Serialization. */ private static class SerializationProxy implements Serializable { /** Serializable. */ private static final long serialVersionUID = 20130226L; /** Wrap. */ private final boolean wrapRows; /** Wrap. */ private final boolean wrapColumns; /** Neighbourhood type. */ private final SquareNeighbourhood neighbourhood; /** Neurons' features. */ private final double[][][] featuresList; /** * @param wrapRows Whether the row dimension is wrapped. * @param wrapColumns Whether the column dimension is wrapped. * @param neighbourhood Neighbourhood type. * @param featuresList List of neurons features. * {@code neuronList}. */ SerializationProxy(boolean wrapRows, boolean wrapColumns, SquareNeighbourhood neighbourhood, double[][][] featuresList) { this.wrapRows = wrapRows; this.wrapColumns = wrapColumns; this.neighbourhood = neighbourhood; this.featuresList = featuresList; } /** * Custom serialization. * * @return the {@link Neuron} for which this instance is the proxy. */ private Object readResolve() { return new NeuronSquareMesh2D(wrapRows, wrapColumns, neighbourhood, featuresList); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy