All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.ContinuousOutputFieldModel Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode;

import java.util.ArrayList;
import java.util.List;

import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.ode.sampling.FieldStepHandler;
import org.apache.commons.math3.ode.sampling.FieldStepInterpolator;
import org.apache.commons.math3.util.FastMath;

/**
 * This class stores all information provided by an ODE integrator
 * during the integration process and build a continuous model of the
 * solution from this.
 *
 * 

This class act as a step handler from the integrator point of * view. It is called iteratively during the integration process and * stores a copy of all steps information in a sorted collection for * later use. Once the integration process is over, the user can use * the {@link #getInterpolatedState(RealFieldElement) getInterpolatedState} * method to retrieve this information at any time. It is important to wait * for the integration to be over before attempting to call {@link * #getInterpolatedState(RealFieldElement)} because some internal * variables are set only once the last step has been handled.

* *

This is useful for example if the main loop of the user * application should remain independent from the integration process * or if one needs to mimic the behaviour of an analytical model * despite a numerical model is used (i.e. one needs the ability to * get the model value at any time or to navigate through the * data).

* *

If problem modeling is done with several separate * integration phases for contiguous intervals, the same * ContinuousOutputModel can be used as step handler for all * integration phases as long as they are performed in order and in * the same direction. As an example, one can extrapolate the * trajectory of a satellite with one model (i.e. one set of * differential equations) up to the beginning of a maneuver, use * another more complex model including thrusters modeling and * accurate attitude control during the maneuver, and revert to the * first model after the end of the maneuver. If the same continuous * output model handles the steps of all integration phases, the user * do not need to bother when the maneuver begins or ends, he has all * the data available in a transparent manner.

* *

One should be aware that the amount of data stored in a * ContinuousOutputFieldModel instance can be important if the state vector * is large, if the integration interval is long or if the steps are * small (which can result from small tolerance settings in {@link * org.apache.commons.math3.ode.nonstiff.AdaptiveStepsizeFieldIntegrator adaptive * step size integrators}).

* * @see FieldStepHandler * @see FieldStepInterpolator * @param the type of the field elements * @since 3.6 */ public class ContinuousOutputFieldModel> implements FieldStepHandler { /** Initial integration time. */ private T initialTime; /** Final integration time. */ private T finalTime; /** Integration direction indicator. */ private boolean forward; /** Current interpolator index. */ private int index; /** Steps table. */ private List> steps; /** Simple constructor. * Build an empty continuous output model. */ public ContinuousOutputFieldModel() { steps = new ArrayList>(); initialTime = null; finalTime = null; forward = true; index = 0; } /** Append another model at the end of the instance. * @param model model to add at the end of the instance * @exception MathIllegalArgumentException if the model to append is not * compatible with the instance (dimension of the state vector, * propagation direction, hole between the dates) * @exception DimensionMismatchException if the dimensions of the states or * the number of secondary states do not match * @exception MaxCountExceededException if the number of functions evaluations is exceeded * during step finalization */ public void append(final ContinuousOutputFieldModel model) throws MathIllegalArgumentException, MaxCountExceededException { if (model.steps.size() == 0) { return; } if (steps.size() == 0) { initialTime = model.initialTime; forward = model.forward; } else { // safety checks final FieldODEStateAndDerivative s1 = steps.get(0).getPreviousState(); final FieldODEStateAndDerivative s2 = model.steps.get(0).getPreviousState(); checkDimensionsEquality(s1.getStateDimension(), s2.getStateDimension()); checkDimensionsEquality(s1.getNumberOfSecondaryStates(), s2.getNumberOfSecondaryStates()); for (int i = 0; i < s1.getNumberOfSecondaryStates(); ++i) { checkDimensionsEquality(s1.getSecondaryStateDimension(i), s2.getSecondaryStateDimension(i)); } if (forward ^ model.forward) { throw new MathIllegalArgumentException(LocalizedFormats.PROPAGATION_DIRECTION_MISMATCH); } final FieldStepInterpolator lastInterpolator = steps.get(index); final T current = lastInterpolator.getCurrentState().getTime(); final T previous = lastInterpolator.getPreviousState().getTime(); final T step = current.subtract(previous); final T gap = model.getInitialTime().subtract(current); if (gap.abs().subtract(step.abs().multiply(1.0e-3)).getReal() > 0) { throw new MathIllegalArgumentException(LocalizedFormats.HOLE_BETWEEN_MODELS_TIME_RANGES, gap.abs().getReal()); } } for (FieldStepInterpolator interpolator : model.steps) { steps.add(interpolator); } index = steps.size() - 1; finalTime = (steps.get(index)).getCurrentState().getTime(); } /** Check dimensions equality. * @param d1 first dimension * @param d2 second dimansion * @exception DimensionMismatchException if dimensions do not match */ private void checkDimensionsEquality(final int d1, final int d2) throws DimensionMismatchException { if (d1 != d2) { throw new DimensionMismatchException(d2, d1); } } /** {@inheritDoc} */ public void init(final FieldODEStateAndDerivative initialState, final T t) { initialTime = initialState.getTime(); finalTime = t; forward = true; index = 0; steps.clear(); } /** Handle the last accepted step. * A copy of the information provided by the last step is stored in * the instance for later use. * @param interpolator interpolator for the last accepted step. * @param isLast true if the step is the last one * @exception MaxCountExceededException if the number of functions evaluations is exceeded * during step finalization */ public void handleStep(final FieldStepInterpolator interpolator, final boolean isLast) throws MaxCountExceededException { if (steps.size() == 0) { initialTime = interpolator.getPreviousState().getTime(); forward = interpolator.isForward(); } steps.add(interpolator); if (isLast) { finalTime = interpolator.getCurrentState().getTime(); index = steps.size() - 1; } } /** * Get the initial integration time. * @return initial integration time */ public T getInitialTime() { return initialTime; } /** * Get the final integration time. * @return final integration time */ public T getFinalTime() { return finalTime; } /** * Get the state at interpolated time. * @param time time of the interpolated point * @return state at interpolated time */ public FieldODEStateAndDerivative getInterpolatedState(final T time) { // initialize the search with the complete steps table int iMin = 0; final FieldStepInterpolator sMin = steps.get(iMin); T tMin = sMin.getPreviousState().getTime().add(sMin.getCurrentState().getTime()).multiply(0.5); int iMax = steps.size() - 1; final FieldStepInterpolator sMax = steps.get(iMax); T tMax = sMax.getPreviousState().getTime().add(sMax.getCurrentState().getTime()).multiply(0.5); // handle points outside of the integration interval // or in the first and last step if (locatePoint(time, sMin) <= 0) { index = iMin; return sMin.getInterpolatedState(time); } if (locatePoint(time, sMax) >= 0) { index = iMax; return sMax.getInterpolatedState(time); } // reduction of the table slice size while (iMax - iMin > 5) { // use the last estimated index as the splitting index final FieldStepInterpolator si = steps.get(index); final int location = locatePoint(time, si); if (location < 0) { iMax = index; tMax = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5); } else if (location > 0) { iMin = index; tMin = si.getPreviousState().getTime().add(si.getCurrentState().getTime()).multiply(0.5); } else { // we have found the target step, no need to continue searching return si.getInterpolatedState(time); } // compute a new estimate of the index in the reduced table slice final int iMed = (iMin + iMax) / 2; final FieldStepInterpolator sMed = steps.get(iMed); final T tMed = sMed.getPreviousState().getTime().add(sMed.getCurrentState().getTime()).multiply(0.5); if (tMed.subtract(tMin).abs().subtract(1.0e-6).getReal() < 0 || tMax.subtract(tMed).abs().subtract(1.0e-6).getReal() < 0) { // too close to the bounds, we estimate using a simple dichotomy index = iMed; } else { // estimate the index using a reverse quadratic polynomial // (reverse means we have i = P(t), thus allowing to simply // compute index = P(time) rather than solving a quadratic equation) final T d12 = tMax.subtract(tMed); final T d23 = tMed.subtract(tMin); final T d13 = tMax.subtract(tMin); final T dt1 = time.subtract(tMax); final T dt2 = time.subtract(tMed); final T dt3 = time.subtract(tMin); final T iLagrange = dt2.multiply(dt3).multiply(d23).multiply(iMax). subtract(dt1.multiply(dt3).multiply(d13).multiply(iMed)). add( dt1.multiply(dt2).multiply(d12).multiply(iMin)). divide(d12.multiply(d23).multiply(d13)); index = (int) FastMath.rint(iLagrange.getReal()); } // force the next size reduction to be at least one tenth final int low = FastMath.max(iMin + 1, (9 * iMin + iMax) / 10); final int high = FastMath.min(iMax - 1, (iMin + 9 * iMax) / 10); if (index < low) { index = low; } else if (index > high) { index = high; } } // now the table slice is very small, we perform an iterative search index = iMin; while (index <= iMax && locatePoint(time, steps.get(index)) > 0) { ++index; } return steps.get(index).getInterpolatedState(time); } /** Compare a step interval and a double. * @param time point to locate * @param interval step interval * @return -1 if the double is before the interval, 0 if it is in * the interval, and +1 if it is after the interval, according to * the interval direction */ private int locatePoint(final T time, final FieldStepInterpolator interval) { if (forward) { if (time.subtract(interval.getPreviousState().getTime()).getReal() < 0) { return -1; } else if (time.subtract(interval.getCurrentState().getTime()).getReal() > 0) { return +1; } else { return 0; } } if (time.subtract(interval.getPreviousState().getTime()).getReal() > 0) { return -1; } else if (time.subtract(interval.getCurrentState().getTime()).getReal() < 0) { return +1; } else { return 0; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy