All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.EmbeddedRungeKuttaFieldIntegrator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.exception.NoBracketingException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldExpandableODE;
import org.apache.commons.math3.ode.FieldODEState;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.MathUtils;

/**
 * This class implements the common part of all embedded Runge-Kutta
 * integrators for Ordinary Differential Equations.
 *
 * 

These methods are embedded explicit Runge-Kutta methods with two * sets of coefficients allowing to estimate the error, their Butcher * arrays are as follows : *

 *    0  |
 *   c2  | a21
 *   c3  | a31  a32
 *   ... |        ...
 *   cs  | as1  as2  ...  ass-1
 *       |--------------------------
 *       |  b1   b2  ...   bs-1  bs
 *       |  b'1  b'2 ...   b's-1 b's
 * 
*

* *

In fact, we rather use the array defined by ej = bj - b'j to * compute directly the error rather than computing two estimates and * then comparing them.

* *

Some methods are qualified as fsal (first same as last) * methods. This means the last evaluation of the derivatives in one * step is the same as the first in the next step. Then, this * evaluation can be reused from one step to the next one and the cost * of such a method is really s-1 evaluations despite the method still * has s stages. This behaviour is true only for successful steps, if * the step is rejected after the error estimation phase, no * evaluation is saved. For an fsal method, we have cs = 1 and * asi = bi for all i.

* * @param the type of the field elements * @since 3.6 */ public abstract class EmbeddedRungeKuttaFieldIntegrator> extends AdaptiveStepsizeFieldIntegrator implements FieldButcherArrayProvider { /** Index of the pre-computed derivative for fsal methods. */ private final int fsal; /** Time steps from Butcher array (without the first zero). */ private final T[] c; /** Internal weights from Butcher array (without the first empty row). */ private final T[][] a; /** External weights for the high order method from Butcher array. */ private final T[] b; /** Stepsize control exponent. */ private final T exp; /** Safety factor for stepsize control. */ private T safety; /** Minimal reduction factor for stepsize control. */ private T minReduction; /** Maximal growth factor for stepsize control. */ private T maxGrowth; /** Build a Runge-Kutta integrator with the given Butcher array. * @param field field to which the time and state vector elements belong * @param name name of the method * @param fsal index of the pre-computed derivative for fsal methods * or -1 if method is not fsal * @param minStep minimal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param maxStep maximal step (sign is irrelevant, regardless of * integration direction, forward or backward), the last step can * be smaller than this * @param scalAbsoluteTolerance allowed absolute error * @param scalRelativeTolerance allowed relative error */ protected EmbeddedRungeKuttaFieldIntegrator(final Field field, final String name, final int fsal, final double minStep, final double maxStep, final double scalAbsoluteTolerance, final double scalRelativeTolerance) { super(field, name, minStep, maxStep, scalAbsoluteTolerance, scalRelativeTolerance); this.fsal = fsal; this.c = getC(); this.a = getA(); this.b = getB(); exp = field.getOne().divide(-getOrder()); // set the default values of the algorithm control parameters setSafety(field.getZero().add(0.9)); setMinReduction(field.getZero().add(0.2)); setMaxGrowth(field.getZero().add(10.0)); } /** Build a Runge-Kutta integrator with the given Butcher array. * @param field field to which the time and state vector elements belong * @param name name of the method * @param fsal index of the pre-computed derivative for fsal methods * or -1 if method is not fsal * @param minStep minimal step (must be positive even for backward * integration), the last step can be smaller than this * @param maxStep maximal step (must be positive even for backward * integration) * @param vecAbsoluteTolerance allowed absolute error * @param vecRelativeTolerance allowed relative error */ protected EmbeddedRungeKuttaFieldIntegrator(final Field field, final String name, final int fsal, final double minStep, final double maxStep, final double[] vecAbsoluteTolerance, final double[] vecRelativeTolerance) { super(field, name, minStep, maxStep, vecAbsoluteTolerance, vecRelativeTolerance); this.fsal = fsal; this.c = getC(); this.a = getA(); this.b = getB(); exp = field.getOne().divide(-getOrder()); // set the default values of the algorithm control parameters setSafety(field.getZero().add(0.9)); setMinReduction(field.getZero().add(0.2)); setMaxGrowth(field.getZero().add(10.0)); } /** Create a fraction. * @param p numerator * @param q denominator * @return p/q computed in the instance field */ protected T fraction(final int p, final int q) { return getField().getOne().multiply(p).divide(q); } /** Create a fraction. * @param p numerator * @param q denominator * @return p/q computed in the instance field */ protected T fraction(final double p, final double q) { return getField().getOne().multiply(p).divide(q); } /** Create an interpolator. * @param forward integration direction indicator * @param yDotK slopes at the intermediate points * @param globalPreviousState start of the global step * @param globalCurrentState end of the global step * @param mapper equations mapper for the all equations * @return external weights for the high order method from Butcher array */ protected abstract RungeKuttaFieldStepInterpolator createInterpolator(boolean forward, T[][] yDotK, final FieldODEStateAndDerivative globalPreviousState, final FieldODEStateAndDerivative globalCurrentState, FieldEquationsMapper mapper); /** Get the order of the method. * @return order of the method */ public abstract int getOrder(); /** Get the safety factor for stepsize control. * @return safety factor */ public T getSafety() { return safety; } /** Set the safety factor for stepsize control. * @param safety safety factor */ public void setSafety(final T safety) { this.safety = safety; } /** {@inheritDoc} */ public FieldODEStateAndDerivative integrate(final FieldExpandableODE equations, final FieldODEState initialState, final T finalTime) throws NumberIsTooSmallException, DimensionMismatchException, MaxCountExceededException, NoBracketingException { sanityChecks(initialState, finalTime); final T t0 = initialState.getTime(); final T[] y0 = equations.getMapper().mapState(initialState); setStepStart(initIntegration(equations, t0, y0, finalTime)); final boolean forward = finalTime.subtract(initialState.getTime()).getReal() > 0; // create some internal working arrays final int stages = c.length + 1; T[] y = y0; final T[][] yDotK = MathArrays.buildArray(getField(), stages, -1); final T[] yTmp = MathArrays.buildArray(getField(), y0.length); // set up integration control objects T hNew = getField().getZero(); boolean firstTime = true; // main integration loop setIsLastStep(false); do { // iterate over step size, ensuring local normalized error is smaller than 1 T error = getField().getZero().add(10); while (error.subtract(1.0).getReal() >= 0) { // first stage y = equations.getMapper().mapState(getStepStart()); yDotK[0] = equations.getMapper().mapDerivative(getStepStart()); if (firstTime) { final T[] scale = MathArrays.buildArray(getField(), mainSetDimension); if (vecAbsoluteTolerance == null) { for (int i = 0; i < scale.length; ++i) { scale[i] = y[i].abs().multiply(scalRelativeTolerance).add(scalAbsoluteTolerance); } } else { for (int i = 0; i < scale.length; ++i) { scale[i] = y[i].abs().multiply(vecRelativeTolerance[i]).add(vecAbsoluteTolerance[i]); } } hNew = initializeStep(forward, getOrder(), scale, getStepStart(), equations.getMapper()); firstTime = false; } setStepSize(hNew); if (forward) { if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() >= 0) { setStepSize(finalTime.subtract(getStepStart().getTime())); } } else { if (getStepStart().getTime().add(getStepSize()).subtract(finalTime).getReal() <= 0) { setStepSize(finalTime.subtract(getStepStart().getTime())); } } // next stages for (int k = 1; k < stages; ++k) { for (int j = 0; j < y0.length; ++j) { T sum = yDotK[0][j].multiply(a[k-1][0]); for (int l = 1; l < k; ++l) { sum = sum.add(yDotK[l][j].multiply(a[k-1][l])); } yTmp[j] = y[j].add(getStepSize().multiply(sum)); } yDotK[k] = computeDerivatives(getStepStart().getTime().add(getStepSize().multiply(c[k-1])), yTmp); } // estimate the state at the end of the step for (int j = 0; j < y0.length; ++j) { T sum = yDotK[0][j].multiply(b[0]); for (int l = 1; l < stages; ++l) { sum = sum.add(yDotK[l][j].multiply(b[l])); } yTmp[j] = y[j].add(getStepSize().multiply(sum)); } // estimate the error at the end of the step error = estimateError(yDotK, y, yTmp, getStepSize()); if (error.subtract(1.0).getReal() >= 0) { // reject the step and attempt to reduce error by stepsize control final T factor = MathUtils.min(maxGrowth, MathUtils.max(minReduction, safety.multiply(error.pow(exp)))); hNew = filterStep(getStepSize().multiply(factor), forward, false); } } final T stepEnd = getStepStart().getTime().add(getStepSize()); final T[] yDotTmp = (fsal >= 0) ? yDotK[fsal] : computeDerivatives(stepEnd, yTmp); final FieldODEStateAndDerivative stateTmp = new FieldODEStateAndDerivative(stepEnd, yTmp, yDotTmp); // local error is small enough: accept the step, trigger events and step handlers System.arraycopy(yTmp, 0, y, 0, y0.length); setStepStart(acceptStep(createInterpolator(forward, yDotK, getStepStart(), stateTmp, equations.getMapper()), finalTime)); if (!isLastStep()) { // stepsize control for next step final T factor = MathUtils.min(maxGrowth, MathUtils.max(minReduction, safety.multiply(error.pow(exp)))); final T scaledH = getStepSize().multiply(factor); final T nextT = getStepStart().getTime().add(scaledH); final boolean nextIsLast = forward ? nextT.subtract(finalTime).getReal() >= 0 : nextT.subtract(finalTime).getReal() <= 0; hNew = filterStep(scaledH, forward, nextIsLast); final T filteredNextT = getStepStart().getTime().add(hNew); final boolean filteredNextIsLast = forward ? filteredNextT.subtract(finalTime).getReal() >= 0 : filteredNextT.subtract(finalTime).getReal() <= 0; if (filteredNextIsLast) { hNew = finalTime.subtract(getStepStart().getTime()); } } } while (!isLastStep()); final FieldODEStateAndDerivative finalState = getStepStart(); resetInternalState(); return finalState; } /** Get the minimal reduction factor for stepsize control. * @return minimal reduction factor */ public T getMinReduction() { return minReduction; } /** Set the minimal reduction factor for stepsize control. * @param minReduction minimal reduction factor */ public void setMinReduction(final T minReduction) { this.minReduction = minReduction; } /** Get the maximal growth factor for stepsize control. * @return maximal growth factor */ public T getMaxGrowth() { return maxGrowth; } /** Set the maximal growth factor for stepsize control. * @param maxGrowth maximal growth factor */ public void setMaxGrowth(final T maxGrowth) { this.maxGrowth = maxGrowth; } /** Compute the error ratio. * @param yDotK derivatives computed during the first stages * @param y0 estimate of the step at the start of the step * @param y1 estimate of the step at the end of the step * @param h current step * @return error ratio, greater than 1 if step should be rejected */ protected abstract T estimateError(T[][] yDotK, T[] y0, T[] y1, T h); }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy