All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.GillFieldIntegrator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;


/**
 * This class implements the Gill fourth order Runge-Kutta
 * integrator for Ordinary Differential Equations .

 * 

This method is an explicit Runge-Kutta method, its Butcher-array * is the following one : *

 *    0  |    0        0       0      0
 *   1/2 |   1/2       0       0      0
 *   1/2 | (q-1)/2  (2-q)/2    0      0
 *    1  |    0       -q/2  (2+q)/2   0
 *       |-------------------------------
 *       |   1/6    (2-q)/6 (2+q)/6  1/6
 * 
* where q = sqrt(2)

* * @see EulerFieldIntegrator * @see ClassicalRungeKuttaFieldIntegrator * @see MidpointFieldIntegrator * @see ThreeEighthesFieldIntegrator * @see LutherFieldIntegrator * @param the type of the field elements * @since 3.6 */ public class GillFieldIntegrator> extends RungeKuttaFieldIntegrator { /** Simple constructor. * Build a fourth-order Gill integrator with the given step. * @param field field to which the time and state vector elements belong * @param step integration step */ public GillFieldIntegrator(final Field field, final T step) { super(field, "Gill", step); } /** {@inheritDoc} */ public T[] getC() { final T[] c = MathArrays.buildArray(getField(), 3); c[0] = fraction(1, 2); c[1] = c[0]; c[2] = getField().getOne(); return c; } /** {@inheritDoc} */ public T[][] getA() { final T two = getField().getZero().add(2); final T sqrtTwo = two.sqrt(); final T[][] a = MathArrays.buildArray(getField(), 3, -1); for (int i = 0; i < a.length; ++i) { a[i] = MathArrays.buildArray(getField(), i + 1); } a[0][0] = fraction(1, 2); a[1][0] = sqrtTwo.subtract(1).multiply(0.5); a[1][1] = sqrtTwo.subtract(2).multiply(-0.5); a[2][0] = getField().getZero(); a[2][1] = sqrtTwo.multiply(-0.5); a[2][2] = sqrtTwo.add(2).multiply(0.5); return a; } /** {@inheritDoc} */ public T[] getB() { final T two = getField().getZero().add(2); final T sqrtTwo = two.sqrt(); final T[] b = MathArrays.buildArray(getField(), 4); b[0] = fraction(1, 6); b[1] = sqrtTwo.subtract(2).divide(-6); b[2] = sqrtTwo.add(2).divide(6); b[3] = b[0]; return b; } /** {@inheritDoc} */ @Override protected GillFieldStepInterpolator createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative globalPreviousState, final FieldODEStateAndDerivative globalCurrentState, final FieldEquationsMapper mapper) { return new GillFieldStepInterpolator(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy