All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.LutherFieldIntegrator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.Field;
import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.ode.FieldEquationsMapper;
import org.apache.commons.math3.ode.FieldODEStateAndDerivative;
import org.apache.commons.math3.util.MathArrays;


/**
 * This class implements the Luther sixth order Runge-Kutta
 * integrator for Ordinary Differential Equations.

 * 

* This method is described in H. A. Luther 1968 paper * An explicit Sixth-Order Runge-Kutta Formula. *

*

This method is an explicit Runge-Kutta method, its Butcher-array * is the following one : *

 *        0   |               0                     0                     0                     0                     0                     0
 *        1   |               1                     0                     0                     0                     0                     0
 *       1/2  |              3/8                   1/8                    0                     0                     0                     0
 *       2/3  |              8/27                  2/27                  8/27                   0                     0                     0
 *   (7-q)/14 | (  -21 +   9q)/392    (  -56 +   8q)/392    (  336 -  48q)/392    (  -63 +   3q)/392                  0                     0
 *   (7+q)/14 | (-1155 - 255q)/1960   ( -280 -  40q)/1960   (    0 - 320q)/1960   (   63 + 363q)/1960   ( 2352 + 392q)/1960                 0
 *        1   | (  330 + 105q)/180    (  120 +   0q)/180    ( -200 + 280q)/180    (  126 - 189q)/180    ( -686 - 126q)/180     ( 490 -  70q)/180
 *            |--------------------------------------------------------------------------------------------------------------------------------------------------
 *            |              1/20                   0                   16/45                  0                   49/180                 49/180         1/20
 * 
* where q = √21

* * @see EulerFieldIntegrator * @see ClassicalRungeKuttaFieldIntegrator * @see GillFieldIntegrator * @see MidpointFieldIntegrator * @see ThreeEighthesFieldIntegrator * @param the type of the field elements * @since 3.6 */ public class LutherFieldIntegrator> extends RungeKuttaFieldIntegrator { /** Simple constructor. * Build a fourth-order Luther integrator with the given step. * @param field field to which the time and state vector elements belong * @param step integration step */ public LutherFieldIntegrator(final Field field, final T step) { super(field, "Luther", step); } /** {@inheritDoc} */ public T[] getC() { final T q = getField().getZero().add(21).sqrt(); final T[] c = MathArrays.buildArray(getField(), 6); c[0] = getField().getOne(); c[1] = fraction(1, 2); c[2] = fraction(2, 3); c[3] = q.subtract(7).divide(-14); c[4] = q.add(7).divide(14); c[5] = getField().getOne(); return c; } /** {@inheritDoc} */ public T[][] getA() { final T q = getField().getZero().add(21).sqrt(); final T[][] a = MathArrays.buildArray(getField(), 6, -1); for (int i = 0; i < a.length; ++i) { a[i] = MathArrays.buildArray(getField(), i + 1); } a[0][0] = getField().getOne(); a[1][0] = fraction(3, 8); a[1][1] = fraction(1, 8); a[2][0] = fraction(8, 27); a[2][1] = fraction(2, 27); a[2][2] = a[2][0]; a[3][0] = q.multiply( 9).add( -21).divide( 392); a[3][1] = q.multiply( 8).add( -56).divide( 392); a[3][2] = q.multiply( -48).add( 336).divide( 392); a[3][3] = q.multiply( 3).add( -63).divide( 392); a[4][0] = q.multiply(-255).add(-1155).divide(1960); a[4][1] = q.multiply( -40).add( -280).divide(1960); a[4][2] = q.multiply(-320) .divide(1960); a[4][3] = q.multiply( 363).add( 63).divide(1960); a[4][4] = q.multiply( 392).add( 2352).divide(1960); a[5][0] = q.multiply( 105).add( 330).divide( 180); a[5][1] = fraction(2, 3); a[5][2] = q.multiply( 280).add( -200).divide( 180); a[5][3] = q.multiply(-189).add( 126).divide( 180); a[5][4] = q.multiply(-126).add( -686).divide( 180); a[5][5] = q.multiply( -70).add( 490).divide( 180); return a; } /** {@inheritDoc} */ public T[] getB() { final T[] b = MathArrays.buildArray(getField(), 7); b[0] = fraction( 1, 20); b[1] = getField().getZero(); b[2] = fraction(16, 45); b[3] = getField().getZero(); b[4] = fraction(49, 180); b[5] = b[4]; b[6] = b[0]; return b; } /** {@inheritDoc} */ @Override protected LutherFieldStepInterpolator createInterpolator(final boolean forward, T[][] yDotK, final FieldODEStateAndDerivative globalPreviousState, final FieldODEStateAndDerivative globalCurrentState, final FieldEquationsMapper mapper) { return new LutherFieldStepInterpolator(getField(), forward, yDotK, globalPreviousState, globalCurrentState, globalPreviousState, globalCurrentState, mapper); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy