All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.nonstiff.MidpointStepInterpolator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.nonstiff;

import org.apache.commons.math3.ode.sampling.StepInterpolator;

/**
 * This class implements a step interpolator for second order
 * Runge-Kutta integrator.
 *
 * 

This interpolator computes dense output inside the last * step computed. The interpolation equation is consistent with the * integration scheme : *

    *
  • Using reference point at step start:
    * y(tn + θ h) = y (tn) + θ h [(1 - θ) y'1 + θ y'2] *
  • *
  • Using reference point at step end:
    * y(tn + θ h) = y (tn + h) + (1-θ) h [θ y'1 - (1+θ) y'2] *
  • *
*

* * where θ belongs to [0 ; 1] and where y'1 and y'2 are the two * evaluations of the derivatives already computed during the * step.

* * @see MidpointIntegrator * @since 1.2 */ class MidpointStepInterpolator extends RungeKuttaStepInterpolator { /** Serializable version identifier */ private static final long serialVersionUID = 20111120L; /** Simple constructor. * This constructor builds an instance that is not usable yet, the * {@link * org.apache.commons.math3.ode.sampling.AbstractStepInterpolator#reinitialize} * method should be called before using the instance in order to * initialize the internal arrays. This constructor is used only * in order to delay the initialization in some cases. The {@link * RungeKuttaIntegrator} class uses the prototyping design pattern * to create the step interpolators by cloning an uninitialized model * and later initializing the copy. */ // CHECKSTYLE: stop RedundantModifier // the public modifier here is needed for serialization public MidpointStepInterpolator() { } // CHECKSTYLE: resume RedundantModifier /** Copy constructor. * @param interpolator interpolator to copy from. The copy is a deep * copy: its arrays are separated from the original arrays of the * instance */ MidpointStepInterpolator(final MidpointStepInterpolator interpolator) { super(interpolator); } /** {@inheritDoc} */ @Override protected StepInterpolator doCopy() { return new MidpointStepInterpolator(this); } /** {@inheritDoc} */ @Override protected void computeInterpolatedStateAndDerivatives(final double theta, final double oneMinusThetaH) { final double coeffDot2 = 2 * theta; final double coeffDot1 = 1 - coeffDot2; if ((previousState != null) && (theta <= 0.5)) { final double coeff1 = theta * oneMinusThetaH; final double coeff2 = theta * theta * h; for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; interpolatedState[i] = previousState[i] + coeff1 * yDot1 + coeff2 * yDot2; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2; } } else { final double coeff1 = oneMinusThetaH * theta; final double coeff2 = oneMinusThetaH * (1.0 + theta); for (int i = 0; i < interpolatedState.length; ++i) { final double yDot1 = yDotK[0][i]; final double yDot2 = yDotK[1][i]; interpolatedState[i] = currentState[i] + coeff1 * yDot1 - coeff2 * yDot2; interpolatedDerivatives[i] = coeffDot1 * yDot1 + coeffDot2 * yDot2; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy