All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ode.sampling.StepNormalizer Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ode.sampling;

import org.apache.commons.math3.exception.MaxCountExceededException;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;

/**
 * This class wraps an object implementing {@link FixedStepHandler}
 * into a {@link StepHandler}.

 * 

This wrapper allows to use fixed step handlers with general * integrators which cannot guaranty their integration steps will * remain constant and therefore only accept general step * handlers.

* *

The stepsize used is selected at construction time. The {@link * FixedStepHandler#handleStep handleStep} method of the underlying * {@link FixedStepHandler} object is called at normalized times. The * normalized times can be influenced by the {@link StepNormalizerMode} and * {@link StepNormalizerBounds}.

* *

There is no constraint on the integrator, it can use any time step * it needs (time steps longer or shorter than the fixed time step and * non-integer ratios are all allowed).

* *

*

* * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * *
Examples (step size = 0.5)
Start timeEnd timeDirection{@link StepNormalizerMode Mode}{@link StepNormalizerBounds Bounds}Output
0.33.1forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#NEITHER NEITHER}0.8, 1.3, 1.8, 2.3, 2.8
0.33.1forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#FIRST FIRST}0.3, 0.8, 1.3, 1.8, 2.3, 2.8
0.33.1forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#LAST LAST}0.8, 1.3, 1.8, 2.3, 2.8, 3.1
0.33.1forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#BOTH BOTH}0.3, 0.8, 1.3, 1.8, 2.3, 2.8, 3.1
0.33.1forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#NEITHER NEITHER}0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.33.1forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#FIRST FIRST}0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.33.1forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#LAST LAST}0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.1
0.33.1forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#BOTH BOTH}0.3, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.1
0.03.0forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#NEITHER NEITHER}0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#FIRST FIRST}0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#LAST LAST}0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#BOTH BOTH}0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#NEITHER NEITHER}0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#FIRST FIRST}0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#LAST LAST}0.5, 1.0, 1.5, 2.0, 2.5, 3.0
0.03.0forward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#BOTH BOTH}0.0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0
3.10.3backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#NEITHER NEITHER}2.6, 2.1, 1.6, 1.1, 0.6
3.10.3backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#FIRST FIRST}3.1, 2.6, 2.1, 1.6, 1.1, 0.6
3.10.3backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#LAST LAST}2.6, 2.1, 1.6, 1.1, 0.6, 0.3
3.10.3backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#BOTH BOTH}3.1, 2.6, 2.1, 1.6, 1.1, 0.6, 0.3
3.10.3backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#NEITHER NEITHER}3.0, 2.5, 2.0, 1.5, 1.0, 0.5
3.10.3backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#FIRST FIRST}3.1, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5
3.10.3backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#LAST LAST}3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.3
3.10.3backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#BOTH BOTH}3.1, 3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.3
3.00.0backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#NEITHER NEITHER}2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#FIRST FIRST}3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#LAST LAST}2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#INCREMENT INCREMENT}{@link StepNormalizerBounds#BOTH BOTH}3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#NEITHER NEITHER}2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#FIRST FIRST}3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#LAST LAST}2.5, 2.0, 1.5, 1.0, 0.5, 0.0
3.00.0backward{@link StepNormalizerMode#MULTIPLES MULTIPLES}{@link StepNormalizerBounds#BOTH BOTH}3.0, 2.5, 2.0, 1.5, 1.0, 0.5, 0.0
*

* * @see StepHandler * @see FixedStepHandler * @see StepNormalizerMode * @see StepNormalizerBounds * @since 1.2 */ public class StepNormalizer implements StepHandler { /** Fixed time step. */ private double h; /** Underlying step handler. */ private final FixedStepHandler handler; /** First step time. */ private double firstTime; /** Last step time. */ private double lastTime; /** Last state vector. */ private double[] lastState; /** Last derivatives vector. */ private double[] lastDerivatives; /** Integration direction indicator. */ private boolean forward; /** The step normalizer bounds settings to use. */ private final StepNormalizerBounds bounds; /** The step normalizer mode to use. */ private final StepNormalizerMode mode; /** Simple constructor. Uses {@link StepNormalizerMode#INCREMENT INCREMENT} * mode, and {@link StepNormalizerBounds#FIRST FIRST} bounds setting, for * backwards compatibility. * @param h fixed time step (sign is not used) * @param handler fixed time step handler to wrap */ public StepNormalizer(final double h, final FixedStepHandler handler) { this(h, handler, StepNormalizerMode.INCREMENT, StepNormalizerBounds.FIRST); } /** Simple constructor. Uses {@link StepNormalizerBounds#FIRST FIRST} * bounds setting. * @param h fixed time step (sign is not used) * @param handler fixed time step handler to wrap * @param mode step normalizer mode to use * @since 3.0 */ public StepNormalizer(final double h, final FixedStepHandler handler, final StepNormalizerMode mode) { this(h, handler, mode, StepNormalizerBounds.FIRST); } /** Simple constructor. Uses {@link StepNormalizerMode#INCREMENT INCREMENT} * mode. * @param h fixed time step (sign is not used) * @param handler fixed time step handler to wrap * @param bounds step normalizer bounds setting to use * @since 3.0 */ public StepNormalizer(final double h, final FixedStepHandler handler, final StepNormalizerBounds bounds) { this(h, handler, StepNormalizerMode.INCREMENT, bounds); } /** Simple constructor. * @param h fixed time step (sign is not used) * @param handler fixed time step handler to wrap * @param mode step normalizer mode to use * @param bounds step normalizer bounds setting to use * @since 3.0 */ public StepNormalizer(final double h, final FixedStepHandler handler, final StepNormalizerMode mode, final StepNormalizerBounds bounds) { this.h = FastMath.abs(h); this.handler = handler; this.mode = mode; this.bounds = bounds; firstTime = Double.NaN; lastTime = Double.NaN; lastState = null; lastDerivatives = null; forward = true; } /** {@inheritDoc} */ public void init(double t0, double[] y0, double t) { firstTime = Double.NaN; lastTime = Double.NaN; lastState = null; lastDerivatives = null; forward = true; // initialize the underlying handler handler.init(t0, y0, t); } /** * Handle the last accepted step * @param interpolator interpolator for the last accepted step. For * efficiency purposes, the various integrators reuse the same * object on each call, so if the instance wants to keep it across * all calls (for example to provide at the end of the integration a * continuous model valid throughout the integration range), it * should build a local copy using the clone method and store this * copy. * @param isLast true if the step is the last one * @exception MaxCountExceededException if the interpolator throws one because * the number of functions evaluations is exceeded */ public void handleStep(final StepInterpolator interpolator, final boolean isLast) throws MaxCountExceededException { // The first time, update the last state with the start information. if (lastState == null) { firstTime = interpolator.getPreviousTime(); lastTime = interpolator.getPreviousTime(); interpolator.setInterpolatedTime(lastTime); lastState = interpolator.getInterpolatedState().clone(); lastDerivatives = interpolator.getInterpolatedDerivatives().clone(); // Take the integration direction into account. forward = interpolator.getCurrentTime() >= lastTime; if (!forward) { h = -h; } } // Calculate next normalized step time. double nextTime = (mode == StepNormalizerMode.INCREMENT) ? lastTime + h : (FastMath.floor(lastTime / h) + 1) * h; if (mode == StepNormalizerMode.MULTIPLES && Precision.equals(nextTime, lastTime, 1)) { nextTime += h; } // Process normalized steps as long as they are in the current step. boolean nextInStep = isNextInStep(nextTime, interpolator); while (nextInStep) { // Output the stored previous step. doNormalizedStep(false); // Store the next step as last step. storeStep(interpolator, nextTime); // Move on to the next step. nextTime += h; nextInStep = isNextInStep(nextTime, interpolator); } if (isLast) { // There will be no more steps. The stored one should be given to // the handler. We may have to output one more step. Only the last // one of those should be flagged as being the last. boolean addLast = bounds.lastIncluded() && lastTime != interpolator.getCurrentTime(); doNormalizedStep(!addLast); if (addLast) { storeStep(interpolator, interpolator.getCurrentTime()); doNormalizedStep(true); } } } /** * Returns a value indicating whether the next normalized time is in the * current step. * @param nextTime the next normalized time * @param interpolator interpolator for the last accepted step, to use to * get the end time of the current step * @return value indicating whether the next normalized time is in the * current step */ private boolean isNextInStep(double nextTime, StepInterpolator interpolator) { return forward ? nextTime <= interpolator.getCurrentTime() : nextTime >= interpolator.getCurrentTime(); } /** * Invokes the underlying step handler for the current normalized step. * @param isLast true if the step is the last one */ private void doNormalizedStep(boolean isLast) { if (!bounds.firstIncluded() && firstTime == lastTime) { return; } handler.handleStep(lastTime, lastState, lastDerivatives, isLast); } /** Stores the interpolated information for the given time in the current * state. * @param interpolator interpolator for the last accepted step, to use to * get the interpolated information * @param t the time for which to store the interpolated information * @exception MaxCountExceededException if the interpolator throws one because * the number of functions evaluations is exceeded */ private void storeStep(StepInterpolator interpolator, double t) throws MaxCountExceededException { lastTime = t; interpolator.setInterpolatedTime(lastTime); System.arraycopy(interpolator.getInterpolatedState(), 0, lastState, 0, lastState.length); System.arraycopy(interpolator.getInterpolatedDerivatives(), 0, lastDerivatives, 0, lastDerivatives.length); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy