All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.optim.linear.LinearOptimizer Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.optim.linear;

import java.util.Collection;
import java.util.Collections;
import org.apache.commons.math3.exception.TooManyIterationsException;
import org.apache.commons.math3.optim.OptimizationData;
import org.apache.commons.math3.optim.PointValuePair;
import org.apache.commons.math3.optim.nonlinear.scalar.MultivariateOptimizer;

/**
 * Base class for implementing linear optimizers.
 *
 * @since 3.1
 */
public abstract class LinearOptimizer
    extends MultivariateOptimizer {
    /**
     * Linear objective function.
     */
    private LinearObjectiveFunction function;
    /**
     * Linear constraints.
     */
    private Collection linearConstraints;
    /**
     * Whether to restrict the variables to non-negative values.
     */
    private boolean nonNegative;

    /**
     * Simple constructor with default settings.
     *
     */
    protected LinearOptimizer() {
        super(null); // No convergence checker.
    }

    /**
     * @return {@code true} if the variables are restricted to non-negative values.
     */
    protected boolean isRestrictedToNonNegative() {
        return nonNegative;
    }

    /**
     * @return the optimization type.
     */
    protected LinearObjectiveFunction getFunction() {
        return function;
    }

    /**
     * @return the optimization type.
     */
    protected Collection getConstraints() {
        return Collections.unmodifiableCollection(linearConstraints);
    }

    /**
     * {@inheritDoc}
     *
     * @param optData Optimization data. In addition to those documented in
     * {@link MultivariateOptimizer#parseOptimizationData(OptimizationData[])
     * MultivariateOptimizer}, this method will register the following data:
     * 
    *
  • {@link LinearObjectiveFunction}
  • *
  • {@link LinearConstraintSet}
  • *
  • {@link NonNegativeConstraint}
  • *
* @return {@inheritDoc} * @throws TooManyIterationsException if the maximal number of * iterations is exceeded. */ @Override public PointValuePair optimize(OptimizationData... optData) throws TooManyIterationsException { // Set up base class and perform computation. return super.optimize(optData); } /** * Scans the list of (required and optional) optimization data that * characterize the problem. * * @param optData Optimization data. * The following data will be looked for: *
    *
  • {@link LinearObjectiveFunction}
  • *
  • {@link LinearConstraintSet}
  • *
  • {@link NonNegativeConstraint}
  • *
*/ @Override protected void parseOptimizationData(OptimizationData... optData) { // Allow base class to register its own data. super.parseOptimizationData(optData); // The existing values (as set by the previous call) are reused if // not provided in the argument list. for (OptimizationData data : optData) { if (data instanceof LinearObjectiveFunction) { function = (LinearObjectiveFunction) data; continue; } if (data instanceof LinearConstraintSet) { linearConstraints = ((LinearConstraintSet) data).getConstraints(); continue; } if (data instanceof NonNegativeConstraint) { nonNegative = ((NonNegativeConstraint) data).isRestrictedToNonNegative(); continue; } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy