All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.descriptive.moment.Kurtosis Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.descriptive.moment;

import java.io.Serializable;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.stat.descriptive.AbstractStorelessUnivariateStatistic;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathUtils;


/**
 * Computes the Kurtosis of the available values.
 * 

* We use the following (unbiased) formula to define kurtosis:

*

* kurtosis = { [n(n+1) / (n -1)(n - 2)(n-3)] sum[(x_i - mean)^4] / std^4 } - [3(n-1)^2 / (n-2)(n-3)] *

* where n is the number of values, mean is the {@link Mean} and std is the * {@link StandardDeviation}

*

* Note that this statistic is undefined for n < 4. Double.Nan * is returned when there is not sufficient data to compute the statistic. * Note that Double.NaN may also be returned if the input includes NaN * and / or infinite values.

*

* Note that this implementation is not synchronized. If * multiple threads access an instance of this class concurrently, and at least * one of the threads invokes the increment() or * clear() method, it must be synchronized externally.

* */ public class Kurtosis extends AbstractStorelessUnivariateStatistic implements Serializable { /** Serializable version identifier */ private static final long serialVersionUID = 2784465764798260919L; /**Fourth Moment on which this statistic is based */ protected FourthMoment moment; /** * Determines whether or not this statistic can be incremented or cleared. *

* Statistics based on (constructed from) external moments cannot * be incremented or cleared.

*/ protected boolean incMoment; /** * Construct a Kurtosis */ public Kurtosis() { incMoment = true; moment = new FourthMoment(); } /** * Construct a Kurtosis from an external moment * * @param m4 external Moment */ public Kurtosis(final FourthMoment m4) { incMoment = false; this.moment = m4; } /** * Copy constructor, creates a new {@code Kurtosis} identical * to the {@code original} * * @param original the {@code Kurtosis} instance to copy * @throws NullArgumentException if original is null */ public Kurtosis(Kurtosis original) throws NullArgumentException { copy(original, this); } /** * {@inheritDoc} *

Note that when {@link #Kurtosis(FourthMoment)} is used to * create a Variance, this method does nothing. In that case, the * FourthMoment should be incremented directly.

*/ @Override public void increment(final double d) { if (incMoment) { moment.increment(d); } } /** * {@inheritDoc} */ @Override public double getResult() { double kurtosis = Double.NaN; if (moment.getN() > 3) { double variance = moment.m2 / (moment.n - 1); if (moment.n <= 3 || variance < 10E-20) { kurtosis = 0.0; } else { double n = moment.n; kurtosis = (n * (n + 1) * moment.getResult() - 3 * moment.m2 * moment.m2 * (n - 1)) / ((n - 1) * (n -2) * (n -3) * variance * variance); } } return kurtosis; } /** * {@inheritDoc} */ @Override public void clear() { if (incMoment) { moment.clear(); } } /** * {@inheritDoc} */ public long getN() { return moment.getN(); } /* UnvariateStatistic Approach */ /** * Returns the kurtosis of the entries in the specified portion of the * input array. *

* See {@link Kurtosis} for details on the computing algorithm.

*

* Throws IllegalArgumentException if the array is null.

* * @param values the input array * @param begin index of the first array element to include * @param length the number of elements to include * @return the kurtosis of the values or Double.NaN if length is less than 4 * @throws MathIllegalArgumentException if the input array is null or the array * index parameters are not valid */ @Override public double evaluate(final double[] values,final int begin, final int length) throws MathIllegalArgumentException { // Initialize the kurtosis double kurt = Double.NaN; if (test(values, begin, length) && length > 3) { // Compute the mean and standard deviation Variance variance = new Variance(); variance.incrementAll(values, begin, length); double mean = variance.moment.m1; double stdDev = FastMath.sqrt(variance.getResult()); // Sum the ^4 of the distance from the mean divided by the // standard deviation double accum3 = 0.0; for (int i = begin; i < begin + length; i++) { accum3 += FastMath.pow(values[i] - mean, 4.0); } accum3 /= FastMath.pow(stdDev, 4.0d); // Get N double n0 = length; double coefficientOne = (n0 * (n0 + 1)) / ((n0 - 1) * (n0 - 2) * (n0 - 3)); double termTwo = (3 * FastMath.pow(n0 - 1, 2.0)) / ((n0 - 2) * (n0 - 3)); // Calculate kurtosis kurt = (coefficientOne * accum3) - termTwo; } return kurt; } /** * {@inheritDoc} */ @Override public Kurtosis copy() { Kurtosis result = new Kurtosis(); // No try-catch because args are guaranteed non-null copy(this, result); return result; } /** * Copies source to dest. *

Neither source nor dest can be null.

* * @param source Kurtosis to copy * @param dest Kurtosis to copy to * @throws NullArgumentException if either source or dest is null */ public static void copy(Kurtosis source, Kurtosis dest) throws NullArgumentException { MathUtils.checkNotNull(source); MathUtils.checkNotNull(dest); dest.setData(source.getDataRef()); dest.moment = source.moment.copy(); dest.incMoment = source.incMoment; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy