All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.descriptive.moment.SemiVariance Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.stat.descriptive.moment;

import java.io.Serializable;

import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.stat.descriptive.AbstractUnivariateStatistic;
import org.apache.commons.math3.util.MathUtils;

/**
 * 

Computes the semivariance of a set of values with respect to a given cutoff value. * We define the downside semivariance of a set of values x * against the cutoff value cutoff to be
* Σ (x[i] - target)2 / df
* where the sum is taken over all i such that x[i] < cutoff * and df is the length of x (non-bias-corrected) or * one less than this number (bias corrected). The upside semivariance * is defined similarly, with the sum taken over values of x that * exceed the cutoff value.

* *

The cutoff value defaults to the mean, bias correction defaults to true * and the "variance direction" (upside or downside) defaults to downside. The variance direction * and bias correction may be set using property setters or their values can provided as * parameters to {@link #evaluate(double[], double, Direction, boolean, int, int)}.

* *

If the input array is null, evaluate methods throw * IllegalArgumentException. If the array has length 1, 0 * is returned, regardless of the value of the cutoff. * *

Note that this class is not intended to be threadsafe. If * multiple threads access an instance of this class concurrently, and one or * more of these threads invoke property setters, external synchronization must * be provided to ensure correct results.

* * @since 2.1 */ public class SemiVariance extends AbstractUnivariateStatistic implements Serializable { /** * The UPSIDE Direction is used to specify that the observations above the * cutoff point will be used to calculate SemiVariance. */ public static final Direction UPSIDE_VARIANCE = Direction.UPSIDE; /** * The DOWNSIDE Direction is used to specify that the observations below * the cutoff point will be used to calculate SemiVariance */ public static final Direction DOWNSIDE_VARIANCE = Direction.DOWNSIDE; /** Serializable version identifier */ private static final long serialVersionUID = -2653430366886024994L; /** * Determines whether or not bias correction is applied when computing the * value of the statisic. True means that bias is corrected. */ private boolean biasCorrected = true; /** * Determines whether to calculate downside or upside SemiVariance. */ private Direction varianceDirection = Direction.DOWNSIDE; /** * Constructs a SemiVariance with default (true) biasCorrected * property and default (Downside) varianceDirection property. */ public SemiVariance() { } /** * Constructs a SemiVariance with the specified biasCorrected * property and default (Downside) varianceDirection property. * * @param biasCorrected setting for bias correction - true means * bias will be corrected and is equivalent to using the argumentless * constructor */ public SemiVariance(final boolean biasCorrected) { this.biasCorrected = biasCorrected; } /** * Constructs a SemiVariance with the specified Direction property * and default (true) biasCorrected property * * @param direction setting for the direction of the SemiVariance * to calculate */ public SemiVariance(final Direction direction) { this.varianceDirection = direction; } /** * Constructs a SemiVariance with the specified isBiasCorrected * property and the specified Direction property. * * @param corrected setting for bias correction - true means * bias will be corrected and is equivalent to using the argumentless * constructor * * @param direction setting for the direction of the SemiVariance * to calculate */ public SemiVariance(final boolean corrected, final Direction direction) { this.biasCorrected = corrected; this.varianceDirection = direction; } /** * Copy constructor, creates a new {@code SemiVariance} identical * to the {@code original} * * @param original the {@code SemiVariance} instance to copy * @throws NullArgumentException if original is null */ public SemiVariance(final SemiVariance original) throws NullArgumentException { copy(original, this); } /** * {@inheritDoc} */ @Override public SemiVariance copy() { SemiVariance result = new SemiVariance(); // No try-catch or advertised exception because args are guaranteed non-null copy(this, result); return result; } /** * Copies source to dest. *

Neither source nor dest can be null.

* * @param source SemiVariance to copy * @param dest SemiVariance to copy to * @throws NullArgumentException if either source or dest is null */ public static void copy(final SemiVariance source, SemiVariance dest) throws NullArgumentException { MathUtils.checkNotNull(source); MathUtils.checkNotNull(dest); dest.setData(source.getDataRef()); dest.biasCorrected = source.biasCorrected; dest.varianceDirection = source.varianceDirection; } /** *

Returns the {@link SemiVariance} of the designated values against the mean, using * instance properties varianceDirection and biasCorrection.

* *

Returns NaN if the array is empty and throws * IllegalArgumentException if the array is null.

* * @param values the input array * @param start index of the first array element to include * @param length the number of elements to include * @return the SemiVariance * @throws MathIllegalArgumentException if the parameters are not valid * */ @Override public double evaluate(final double[] values, final int start, final int length) throws MathIllegalArgumentException { double m = (new Mean()).evaluate(values, start, length); return evaluate(values, m, varianceDirection, biasCorrected, 0, values.length); } /** * This method calculates {@link SemiVariance} for the entire array against the mean, using * the current value of the biasCorrection instance property. * * @param values the input array * @param direction the {@link Direction} of the semivariance * @return the SemiVariance * @throws MathIllegalArgumentException if values is null * */ public double evaluate(final double[] values, Direction direction) throws MathIllegalArgumentException { double m = (new Mean()).evaluate(values); return evaluate (values, m, direction, biasCorrected, 0, values.length); } /** *

Returns the {@link SemiVariance} of the designated values against the cutoff, using * instance properties variancDirection and biasCorrection.

* *

Returns NaN if the array is empty and throws * MathIllegalArgumentException if the array is null.

* * @param values the input array * @param cutoff the reference point * @return the SemiVariance * @throws MathIllegalArgumentException if values is null */ public double evaluate(final double[] values, final double cutoff) throws MathIllegalArgumentException { return evaluate(values, cutoff, varianceDirection, biasCorrected, 0, values.length); } /** *

Returns the {@link SemiVariance} of the designated values against the cutoff in the * given direction, using the current value of the biasCorrection instance property.

* *

Returns NaN if the array is empty and throws * MathIllegalArgumentException if the array is null.

* * @param values the input array * @param cutoff the reference point * @param direction the {@link Direction} of the semivariance * @return the SemiVariance * @throws MathIllegalArgumentException if values is null */ public double evaluate(final double[] values, final double cutoff, final Direction direction) throws MathIllegalArgumentException { return evaluate(values, cutoff, direction, biasCorrected, 0, values.length); } /** *

Returns the {@link SemiVariance} of the designated values against the cutoff * in the given direction with the provided bias correction.

* *

Returns NaN if the array is empty and throws * IllegalArgumentException if the array is null.

* * @param values the input array * @param cutoff the reference point * @param direction the {@link Direction} of the semivariance * @param corrected the BiasCorrection flag * @param start index of the first array element to include * @param length the number of elements to include * @return the SemiVariance * @throws MathIllegalArgumentException if the parameters are not valid * */ public double evaluate (final double[] values, final double cutoff, final Direction direction, final boolean corrected, final int start, final int length) throws MathIllegalArgumentException { test(values, start, length); if (values.length == 0) { return Double.NaN; } else { if (values.length == 1) { return 0.0; } else { final boolean booleanDirection = direction.getDirection(); double dev = 0.0; double sumsq = 0.0; for (int i = start; i < length; i++) { if ((values[i] > cutoff) == booleanDirection) { dev = values[i] - cutoff; sumsq += dev * dev; } } if (corrected) { return sumsq / (length - 1.0); } else { return sumsq / length; } } } } /** * Returns true iff biasCorrected property is set to true. * * @return the value of biasCorrected. */ public boolean isBiasCorrected() { return biasCorrected; } /** * Sets the biasCorrected property. * * @param biasCorrected new biasCorrected property value */ public void setBiasCorrected(boolean biasCorrected) { this.biasCorrected = biasCorrected; } /** * Returns the varianceDirection property. * * @return the varianceDirection */ public Direction getVarianceDirection () { return varianceDirection; } /** * Sets the variance direction * * @param varianceDirection the direction of the semivariance */ public void setVarianceDirection(Direction varianceDirection) { this.varianceDirection = varianceDirection; } /** * The direction of the semivariance - either upside or downside. The direction * is represented by boolean, with true corresponding to UPSIDE semivariance. */ public enum Direction { /** * The UPSIDE Direction is used to specify that the observations above the * cutoff point will be used to calculate SemiVariance */ UPSIDE (true), /** * The DOWNSIDE Direction is used to specify that the observations below * the cutoff point will be used to calculate SemiVariance */ DOWNSIDE (false); /** * boolean value UPSIDE <-> true */ private boolean direction; /** * Create a Direction with the given value. * * @param b boolean value representing the Direction. True corresponds to UPSIDE. */ Direction (boolean b) { direction = b; } /** * Returns the value of this Direction. True corresponds to UPSIDE. * * @return true if direction is UPSIDE; false otherwise */ boolean getDirection () { return direction; } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy