org.apache.commons.math3.stat.interval.NormalApproximationInterval Maven / Gradle / Ivy
Go to download
Show more of this group Show more artifacts with this name
Show all versions of commons-math3 Show documentation
Show all versions of commons-math3 Show documentation
The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.
/*
* Licensed to the Apache Software Foundation (ASF) under one or more
* contributor license agreements. See the NOTICE file distributed with
* this work for additional information regarding copyright ownership.
* The ASF licenses this file to You under the Apache License, Version 2.0
* (the "License"); you may not use this file except in compliance with
* the License. You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*/
package org.apache.commons.math3.stat.interval;
import org.apache.commons.math3.distribution.NormalDistribution;
import org.apache.commons.math3.util.FastMath;
/**
* Implements the normal approximation method for creating a binomial proportion confidence interval.
*
* @see
* Normal approximation interval (Wikipedia)
* @since 3.3
*/
public class NormalApproximationInterval implements BinomialConfidenceInterval {
/** {@inheritDoc} */
public ConfidenceInterval createInterval(int numberOfTrials, int numberOfSuccesses,
double confidenceLevel) {
IntervalUtils.checkParameters(numberOfTrials, numberOfSuccesses, confidenceLevel);
final double mean = (double) numberOfSuccesses / (double) numberOfTrials;
final double alpha = (1.0 - confidenceLevel) / 2;
final NormalDistribution normalDistribution = new NormalDistribution();
final double difference = normalDistribution.inverseCumulativeProbability(1 - alpha) *
FastMath.sqrt(1.0 / numberOfTrials * mean * (1 - mean));
return new ConfidenceInterval(mean - difference, mean + difference, confidenceLevel);
}
}