All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.analysis.interpolation.AkimaSplineInterpolator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.analysis.interpolation;

import org.apache.commons.math3.analysis.polynomials.PolynomialFunction;
import org.apache.commons.math3.analysis.polynomials.PolynomialSplineFunction;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.NonMonotonicSequenceException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;
import org.apache.commons.math3.util.Precision;

/**
 * Computes a cubic spline interpolation for the data set using the Akima
 * algorithm, as originally formulated by Hiroshi Akima in his 1970 paper
 * "A New Method of Interpolation and Smooth Curve Fitting Based on Local Procedures."
 * J. ACM 17, 4 (October 1970), 589-602. DOI=10.1145/321607.321609
 * http://doi.acm.org/10.1145/321607.321609
 * 

* This implementation is based on the Akima implementation in the CubicSpline * class in the Math.NET Numerics library. The method referenced is * CubicSpline.InterpolateAkimaSorted *

*

* The {@link #interpolate(double[], double[]) interpolate} method returns a * {@link PolynomialSplineFunction} consisting of n cubic polynomials, defined * over the subintervals determined by the x values, {@code x[0] < x[i] ... < x[n]}. * The Akima algorithm requires that {@code n >= 5}. *

*/ public class AkimaSplineInterpolator implements UnivariateInterpolator { /** The minimum number of points that are needed to compute the function. */ private static final int MINIMUM_NUMBER_POINTS = 5; /** * Computes an interpolating function for the data set. * * @param xvals the arguments for the interpolation points * @param yvals the values for the interpolation points * @return a function which interpolates the data set * @throws DimensionMismatchException if {@code xvals} and {@code yvals} have * different sizes. * @throws NonMonotonicSequenceException if {@code xvals} is not sorted in * strict increasing order. * @throws NumberIsTooSmallException if the size of {@code xvals} is smaller * than 5. */ public PolynomialSplineFunction interpolate(double[] xvals, double[] yvals) throws DimensionMismatchException, NumberIsTooSmallException, NonMonotonicSequenceException { if (xvals == null || yvals == null) { throw new NullArgumentException(); } if (xvals.length != yvals.length) { throw new DimensionMismatchException(xvals.length, yvals.length); } if (xvals.length < MINIMUM_NUMBER_POINTS) { throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, xvals.length, MINIMUM_NUMBER_POINTS, true); } MathArrays.checkOrder(xvals); final int numberOfDiffAndWeightElements = xvals.length - 1; final double[] differences = new double[numberOfDiffAndWeightElements]; final double[] weights = new double[numberOfDiffAndWeightElements]; for (int i = 0; i < differences.length; i++) { differences[i] = (yvals[i + 1] - yvals[i]) / (xvals[i + 1] - xvals[i]); } for (int i = 1; i < weights.length; i++) { weights[i] = FastMath.abs(differences[i] - differences[i - 1]); } // Prepare Hermite interpolation scheme. final double[] firstDerivatives = new double[xvals.length]; for (int i = 2; i < firstDerivatives.length - 2; i++) { final double wP = weights[i + 1]; final double wM = weights[i - 1]; if (Precision.equals(wP, 0.0) && Precision.equals(wM, 0.0)) { final double xv = xvals[i]; final double xvP = xvals[i + 1]; final double xvM = xvals[i - 1]; firstDerivatives[i] = (((xvP - xv) * differences[i - 1]) + ((xv - xvM) * differences[i])) / (xvP - xvM); } else { firstDerivatives[i] = ((wP * differences[i - 1]) + (wM * differences[i])) / (wP + wM); } } firstDerivatives[0] = differentiateThreePoint(xvals, yvals, 0, 0, 1, 2); firstDerivatives[1] = differentiateThreePoint(xvals, yvals, 1, 0, 1, 2); firstDerivatives[xvals.length - 2] = differentiateThreePoint(xvals, yvals, xvals.length - 2, xvals.length - 3, xvals.length - 2, xvals.length - 1); firstDerivatives[xvals.length - 1] = differentiateThreePoint(xvals, yvals, xvals.length - 1, xvals.length - 3, xvals.length - 2, xvals.length - 1); return interpolateHermiteSorted(xvals, yvals, firstDerivatives); } /** * Three point differentiation helper, modeled off of the same method in the * Math.NET CubicSpline class. This is used by both the Apache Math and the * Math.NET Akima Cubic Spline algorithms * * @param xvals x values to calculate the numerical derivative with * @param yvals y values to calculate the numerical derivative with * @param indexOfDifferentiation index of the elemnt we are calculating the derivative around * @param indexOfFirstSample index of the first element to sample for the three point method * @param indexOfSecondsample index of the second element to sample for the three point method * @param indexOfThirdSample index of the third element to sample for the three point method * @return the derivative */ private double differentiateThreePoint(double[] xvals, double[] yvals, int indexOfDifferentiation, int indexOfFirstSample, int indexOfSecondsample, int indexOfThirdSample) { final double x0 = yvals[indexOfFirstSample]; final double x1 = yvals[indexOfSecondsample]; final double x2 = yvals[indexOfThirdSample]; final double t = xvals[indexOfDifferentiation] - xvals[indexOfFirstSample]; final double t1 = xvals[indexOfSecondsample] - xvals[indexOfFirstSample]; final double t2 = xvals[indexOfThirdSample] - xvals[indexOfFirstSample]; final double a = (x2 - x0 - (t2 / t1 * (x1 - x0))) / (t2 * t2 - t1 * t2); final double b = (x1 - x0 - a * t1 * t1) / t1; return (2 * a * t) + b; } /** * Creates a Hermite cubic spline interpolation from the set of (x,y) value * pairs and their derivatives. This is modeled off of the * InterpolateHermiteSorted method in the Math.NET CubicSpline class. * * @param xvals x values for interpolation * @param yvals y values for interpolation * @param firstDerivatives first derivative values of the function * @return polynomial that fits the function */ private PolynomialSplineFunction interpolateHermiteSorted(double[] xvals, double[] yvals, double[] firstDerivatives) { if (xvals.length != yvals.length) { throw new DimensionMismatchException(xvals.length, yvals.length); } if (xvals.length != firstDerivatives.length) { throw new DimensionMismatchException(xvals.length, firstDerivatives.length); } final int minimumLength = 2; if (xvals.length < minimumLength) { throw new NumberIsTooSmallException(LocalizedFormats.NUMBER_OF_POINTS, xvals.length, minimumLength, true); } final int size = xvals.length - 1; final PolynomialFunction[] polynomials = new PolynomialFunction[size]; final double[] coefficients = new double[4]; for (int i = 0; i < polynomials.length; i++) { final double w = xvals[i + 1] - xvals[i]; final double w2 = w * w; final double yv = yvals[i]; final double yvP = yvals[i + 1]; final double fd = firstDerivatives[i]; final double fdP = firstDerivatives[i + 1]; coefficients[0] = yv; coefficients[1] = firstDerivatives[i]; coefficients[2] = (3 * (yvP - yv) / w - 2 * fd - fdP) / w; coefficients[3] = (2 * (yv - yvP) / w + fd + fdP) / w2; polynomials[i] = new PolynomialFunction(coefficients); } return new PolynomialSplineFunction(xvals, polynomials); } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy