All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.MultivariateNormalDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.linear.Array2DRowRealMatrix;
import org.apache.commons.math3.linear.EigenDecomposition;
import org.apache.commons.math3.linear.NonPositiveDefiniteMatrixException;
import org.apache.commons.math3.linear.RealMatrix;
import org.apache.commons.math3.linear.SingularMatrixException;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;

/**
 * Implementation of the multivariate normal (Gaussian) distribution.
 *
 * @see 
 * Multivariate normal distribution (Wikipedia)
 * @see 
 * Multivariate normal distribution (MathWorld)
 *
 * @since 3.1
 */
public class MultivariateNormalDistribution
    extends AbstractMultivariateRealDistribution {
    /** Vector of means. */
    private final double[] means;
    /** Covariance matrix. */
    private final RealMatrix covarianceMatrix;
    /** The matrix inverse of the covariance matrix. */
    private final RealMatrix covarianceMatrixInverse;
    /** The determinant of the covariance matrix. */
    private final double covarianceMatrixDeterminant;
    /** Matrix used in computation of samples. */
    private final RealMatrix samplingMatrix;

    /**
     * Creates a multivariate normal distribution with the given mean vector and
     * covariance matrix.
     * 
* The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { this(new Well19937c(), means, covariances); } /** * Creates a multivariate normal distribution with the given mean vector and * covariance matrix. *
* The number of dimensions is equal to the length of the mean vector * and to the number of rows and columns of the covariance matrix. * It is frequently written as "p" in formulae. * * @param rng Random Number Generator. * @param means Vector of means. * @param covariances Covariance matrix. * @throws DimensionMismatchException if the arrays length are * inconsistent. * @throws SingularMatrixException if the eigenvalue decomposition cannot * be performed on the provided covariance matrix. * @throws NonPositiveDefiniteMatrixException if any of the eigenvalues is * negative. */ public MultivariateNormalDistribution(RandomGenerator rng, final double[] means, final double[][] covariances) throws SingularMatrixException, DimensionMismatchException, NonPositiveDefiniteMatrixException { super(rng, means.length); final int dim = means.length; if (covariances.length != dim) { throw new DimensionMismatchException(covariances.length, dim); } for (int i = 0; i < dim; i++) { if (dim != covariances[i].length) { throw new DimensionMismatchException(covariances[i].length, dim); } } this.means = MathArrays.copyOf(means); covarianceMatrix = new Array2DRowRealMatrix(covariances); // Covariance matrix eigen decomposition. final EigenDecomposition covMatDec = new EigenDecomposition(covarianceMatrix); // Compute and store the inverse. covarianceMatrixInverse = covMatDec.getSolver().getInverse(); // Compute and store the determinant. covarianceMatrixDeterminant = covMatDec.getDeterminant(); // Eigenvalues of the covariance matrix. final double[] covMatEigenvalues = covMatDec.getRealEigenvalues(); for (int i = 0; i < covMatEigenvalues.length; i++) { if (covMatEigenvalues[i] < 0) { throw new NonPositiveDefiniteMatrixException(covMatEigenvalues[i], i, 0); } } // Matrix where each column is an eigenvector of the covariance matrix. final Array2DRowRealMatrix covMatEigenvectors = new Array2DRowRealMatrix(dim, dim); for (int v = 0; v < dim; v++) { final double[] evec = covMatDec.getEigenvector(v).toArray(); covMatEigenvectors.setColumn(v, evec); } final RealMatrix tmpMatrix = covMatEigenvectors.transpose(); // Scale each eigenvector by the square root of its eigenvalue. for (int row = 0; row < dim; row++) { final double factor = FastMath.sqrt(covMatEigenvalues[row]); for (int col = 0; col < dim; col++) { tmpMatrix.multiplyEntry(row, col, factor); } } samplingMatrix = covMatEigenvectors.multiply(tmpMatrix); } /** * Gets the mean vector. * * @return the mean vector. */ public double[] getMeans() { return MathArrays.copyOf(means); } /** * Gets the covariance matrix. * * @return the covariance matrix. */ public RealMatrix getCovariances() { return covarianceMatrix.copy(); } /** {@inheritDoc} */ public double density(final double[] vals) throws DimensionMismatchException { final int dim = getDimension(); if (vals.length != dim) { throw new DimensionMismatchException(vals.length, dim); } return FastMath.pow(2 * FastMath.PI, -0.5 * dim) * FastMath.pow(covarianceMatrixDeterminant, -0.5) * getExponentTerm(vals); } /** * Gets the square root of each element on the diagonal of the covariance * matrix. * * @return the standard deviations. */ public double[] getStandardDeviations() { final int dim = getDimension(); final double[] std = new double[dim]; final double[][] s = covarianceMatrix.getData(); for (int i = 0; i < dim; i++) { std[i] = FastMath.sqrt(s[i][i]); } return std; } /** {@inheritDoc} */ @Override public double[] sample() { final int dim = getDimension(); final double[] normalVals = new double[dim]; for (int i = 0; i < dim; i++) { normalVals[i] = random.nextGaussian(); } final double[] vals = samplingMatrix.operate(normalVals); for (int i = 0; i < dim; i++) { vals[i] += means[i]; } return vals; } /** * Computes the term used in the exponent (see definition of the distribution). * * @param values Values at which to compute density. * @return the multiplication factor of density calculations. */ private double getExponentTerm(final double[] values) { final double[] centered = new double[values.length]; for (int i = 0; i < centered.length; i++) { centered[i] = values[i] - getMeans()[i]; } final double[] preMultiplied = covarianceMatrixInverse.preMultiply(centered); double sum = 0; for (int i = 0; i < preMultiplied.length; i++) { sum += preMultiplied[i] * centered[i]; } return FastMath.exp(-0.5 * sum); } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy