All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ml.neuralnet.Network Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.neuralnet;

import java.io.Serializable;
import java.io.ObjectInputStream;
import java.util.NoSuchElementException;
import java.util.List;
import java.util.ArrayList;
import java.util.Set;
import java.util.HashSet;
import java.util.Collection;
import java.util.Iterator;
import java.util.Comparator;
import java.util.Collections;
import java.util.Map;
import java.util.concurrent.ConcurrentHashMap;
import java.util.concurrent.atomic.AtomicLong;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalStateException;

/**
 * Neural network, composed of {@link Neuron} instances and the links
 * between them.
 *
 * Although updating a neuron's state is thread-safe, modifying the
 * network's topology (adding or removing links) is not.
 *
 * @since 3.3
 */
public class Network
    implements Iterable,
               Serializable {
    /** Serializable. */
    private static final long serialVersionUID = 20130207L;
    /** Neurons. */
    private final ConcurrentHashMap neuronMap
        = new ConcurrentHashMap();
    /** Next available neuron identifier. */
    private final AtomicLong nextId;
    /** Neuron's features set size. */
    private final int featureSize;
    /** Links. */
    private final ConcurrentHashMap> linkMap
        = new ConcurrentHashMap>();

    /**
     * Comparator that prescribes an order of the neurons according
     * to the increasing order of their identifier.
     */
    public static class NeuronIdentifierComparator
        implements Comparator,
                   Serializable {
        /** Version identifier. */
        private static final long serialVersionUID = 20130207L;

        /** {@inheritDoc} */
        public int compare(Neuron a,
                           Neuron b) {
            final long aId = a.getIdentifier();
            final long bId = b.getIdentifier();
            return aId < bId ? -1 :
                aId > bId ? 1 : 0;
        }
    }

    /**
     * Constructor with restricted access, solely used for deserialization.
     *
     * @param nextId Next available identifier.
     * @param featureSize Number of features.
     * @param neuronList Neurons.
     * @param neighbourIdList Links associated to each of the neurons in
     * {@code neuronList}.
     * @throws MathIllegalStateException if an inconsistency is detected
     * (which probably means that the serialized form has been corrupted).
     */
    Network(long nextId,
            int featureSize,
            Neuron[] neuronList,
            long[][] neighbourIdList) {
        final int numNeurons = neuronList.length;
        if (numNeurons != neighbourIdList.length) {
            throw new MathIllegalStateException();
        }

        for (int i = 0; i < numNeurons; i++) {
            final Neuron n = neuronList[i];
            final long id = n.getIdentifier();
            if (id >= nextId) {
                throw new MathIllegalStateException();
            }
            neuronMap.put(id, n);
            linkMap.put(id, new HashSet());
        }

        for (int i = 0; i < numNeurons; i++) {
            final long aId = neuronList[i].getIdentifier();
            final Set aLinks = linkMap.get(aId);
            for (Long bId : neighbourIdList[i]) {
                if (neuronMap.get(bId) == null) {
                    throw new MathIllegalStateException();
                }
                addLinkToLinkSet(aLinks, bId);
            }
        }

        this.nextId = new AtomicLong(nextId);
        this.featureSize = featureSize;
    }

    /**
     * @param initialIdentifier Identifier for the first neuron that
     * will be added to this network.
     * @param featureSize Size of the neuron's features.
     */
    public Network(long initialIdentifier,
                   int featureSize) {
        nextId = new AtomicLong(initialIdentifier);
        this.featureSize = featureSize;
    }

    /**
     * Performs a deep copy of this instance.
     * Upon return, the copied and original instances will be independent:
     * Updating one will not affect the other.
     *
     * @return a new instance with the same state as this instance.
     * @since 3.6
     */
    public synchronized Network copy() {
        final Network copy = new Network(nextId.get(),
                                         featureSize);


        for (Map.Entry e : neuronMap.entrySet()) {
            copy.neuronMap.put(e.getKey(), e.getValue().copy());
        }

        for (Map.Entry> e : linkMap.entrySet()) {
            copy.linkMap.put(e.getKey(), new HashSet(e.getValue()));
        }

        return copy;
    }

    /**
     * {@inheritDoc}
     */
    public Iterator iterator() {
        return neuronMap.values().iterator();
    }

    /**
     * Creates a list of the neurons, sorted in a custom order.
     *
     * @param comparator {@link Comparator} used for sorting the neurons.
     * @return a list of neurons, sorted in the order prescribed by the
     * given {@code comparator}.
     * @see NeuronIdentifierComparator
     */
    public Collection getNeurons(Comparator comparator) {
        final List neurons = new ArrayList();
        neurons.addAll(neuronMap.values());

        Collections.sort(neurons, comparator);

        return neurons;
    }

    /**
     * Creates a neuron and assigns it a unique identifier.
     *
     * @param features Initial values for the neuron's features.
     * @return the neuron's identifier.
     * @throws DimensionMismatchException if the length of {@code features}
     * is different from the expected size (as set by the
     * {@link #Network(long,int) constructor}).
     */
    public long createNeuron(double[] features) {
        if (features.length != featureSize) {
            throw new DimensionMismatchException(features.length, featureSize);
        }

        final long id = createNextId();
        neuronMap.put(id, new Neuron(id, features));
        linkMap.put(id, new HashSet());
        return id;
    }

    /**
     * Deletes a neuron.
     * Links from all neighbours to the removed neuron will also be
     * {@link #deleteLink(Neuron,Neuron) deleted}.
     *
     * @param neuron Neuron to be removed from this network.
     * @throws NoSuchElementException if {@code n} does not belong to
     * this network.
     */
    public void deleteNeuron(Neuron neuron) {
        final Collection neighbours = getNeighbours(neuron);

        // Delete links to from neighbours.
        for (Neuron n : neighbours) {
            deleteLink(n, neuron);
        }

        // Remove neuron.
        neuronMap.remove(neuron.getIdentifier());
    }

    /**
     * Gets the size of the neurons' features set.
     *
     * @return the size of the features set.
     */
    public int getFeaturesSize() {
        return featureSize;
    }

    /**
     * Adds a link from neuron {@code a} to neuron {@code b}.
     * Note: the link is not bi-directional; if a bi-directional link is
     * required, an additional call must be made with {@code a} and
     * {@code b} exchanged in the argument list.
     *
     * @param a Neuron.
     * @param b Neuron.
     * @throws NoSuchElementException if the neurons do not exist in the
     * network.
     */
    public void addLink(Neuron a,
                        Neuron b) {
        final long aId = a.getIdentifier();
        final long bId = b.getIdentifier();

        // Check that the neurons belong to this network.
        if (a != getNeuron(aId)) {
            throw new NoSuchElementException(Long.toString(aId));
        }
        if (b != getNeuron(bId)) {
            throw new NoSuchElementException(Long.toString(bId));
        }

        // Add link from "a" to "b".
        addLinkToLinkSet(linkMap.get(aId), bId);
    }

    /**
     * Adds a link to neuron {@code id} in given {@code linkSet}.
     * Note: no check verifies that the identifier indeed belongs
     * to this network.
     *
     * @param linkSet Neuron identifier.
     * @param id Neuron identifier.
     */
    private void addLinkToLinkSet(Set linkSet,
                                  long id) {
        linkSet.add(id);
    }

    /**
     * Deletes the link between neurons {@code a} and {@code b}.
     *
     * @param a Neuron.
     * @param b Neuron.
     * @throws NoSuchElementException if the neurons do not exist in the
     * network.
     */
    public void deleteLink(Neuron a,
                           Neuron b) {
        final long aId = a.getIdentifier();
        final long bId = b.getIdentifier();

        // Check that the neurons belong to this network.
        if (a != getNeuron(aId)) {
            throw new NoSuchElementException(Long.toString(aId));
        }
        if (b != getNeuron(bId)) {
            throw new NoSuchElementException(Long.toString(bId));
        }

        // Delete link from "a" to "b".
        deleteLinkFromLinkSet(linkMap.get(aId), bId);
    }

    /**
     * Deletes a link to neuron {@code id} in given {@code linkSet}.
     * Note: no check verifies that the identifier indeed belongs
     * to this network.
     *
     * @param linkSet Neuron identifier.
     * @param id Neuron identifier.
     */
    private void deleteLinkFromLinkSet(Set linkSet,
                                       long id) {
        linkSet.remove(id);
    }

    /**
     * Retrieves the neuron with the given (unique) {@code id}.
     *
     * @param id Identifier.
     * @return the neuron associated with the given {@code id}.
     * @throws NoSuchElementException if the neuron does not exist in the
     * network.
     */
    public Neuron getNeuron(long id) {
        final Neuron n = neuronMap.get(id);
        if (n == null) {
            throw new NoSuchElementException(Long.toString(id));
        }
        return n;
    }

    /**
     * Retrieves the neurons in the neighbourhood of any neuron in the
     * {@code neurons} list.
     * @param neurons Neurons for which to retrieve the neighbours.
     * @return the list of neighbours.
     * @see #getNeighbours(Iterable,Iterable)
     */
    public Collection getNeighbours(Iterable neurons) {
        return getNeighbours(neurons, null);
    }

    /**
     * Retrieves the neurons in the neighbourhood of any neuron in the
     * {@code neurons} list.
     * The {@code exclude} list allows to retrieve the "concentric"
     * neighbourhoods by removing the neurons that belong to the inner
     * "circles".
     *
     * @param neurons Neurons for which to retrieve the neighbours.
     * @param exclude Neurons to exclude from the returned list.
     * Can be {@code null}.
     * @return the list of neighbours.
     */
    public Collection getNeighbours(Iterable neurons,
                                            Iterable exclude) {
        final Set idList = new HashSet();

        for (Neuron n : neurons) {
            idList.addAll(linkMap.get(n.getIdentifier()));
        }
        if (exclude != null) {
            for (Neuron n : exclude) {
                idList.remove(n.getIdentifier());
            }
        }

        final List neuronList = new ArrayList();
        for (Long id : idList) {
            neuronList.add(getNeuron(id));
        }

        return neuronList;
    }

    /**
     * Retrieves the neighbours of the given neuron.
     *
     * @param neuron Neuron for which to retrieve the neighbours.
     * @return the list of neighbours.
     * @see #getNeighbours(Neuron,Iterable)
     */
    public Collection getNeighbours(Neuron neuron) {
        return getNeighbours(neuron, null);
    }

    /**
     * Retrieves the neighbours of the given neuron.
     *
     * @param neuron Neuron for which to retrieve the neighbours.
     * @param exclude Neurons to exclude from the returned list.
     * Can be {@code null}.
     * @return the list of neighbours.
     */
    public Collection getNeighbours(Neuron neuron,
                                            Iterable exclude) {
        final Set idList = linkMap.get(neuron.getIdentifier());
        if (exclude != null) {
            for (Neuron n : exclude) {
                idList.remove(n.getIdentifier());
            }
        }

        final List neuronList = new ArrayList();
        for (Long id : idList) {
            neuronList.add(getNeuron(id));
        }

        return neuronList;
    }

    /**
     * Creates a neuron identifier.
     *
     * @return a value that will serve as a unique identifier.
     */
    private Long createNextId() {
        return nextId.getAndIncrement();
    }

    /**
     * Prevents proxy bypass.
     *
     * @param in Input stream.
     */
    private void readObject(ObjectInputStream in) {
        throw new IllegalStateException();
    }

    /**
     * Custom serialization.
     *
     * @return the proxy instance that will be actually serialized.
     */
    private Object writeReplace() {
        final Neuron[] neuronList = neuronMap.values().toArray(new Neuron[0]);
        final long[][] neighbourIdList = new long[neuronList.length][];

        for (int i = 0; i < neuronList.length; i++) {
            final Collection neighbours = getNeighbours(neuronList[i]);
            final long[] neighboursId = new long[neighbours.size()];
            int count = 0;
            for (Neuron n : neighbours) {
                neighboursId[count] = n.getIdentifier();
                ++count;
            }
            neighbourIdList[i] = neighboursId;
        }

        return new SerializationProxy(nextId.get(),
                                      featureSize,
                                      neuronList,
                                      neighbourIdList);
    }

    /**
     * Serialization.
     */
    private static class SerializationProxy implements Serializable {
        /** Serializable. */
        private static final long serialVersionUID = 20130207L;
        /** Next identifier. */
        private final long nextId;
        /** Number of features. */
        private final int featureSize;
        /** Neurons. */
        private final Neuron[] neuronList;
        /** Links. */
        private final long[][] neighbourIdList;

        /**
         * @param nextId Next available identifier.
         * @param featureSize Number of features.
         * @param neuronList Neurons.
         * @param neighbourIdList Links associated to each of the neurons in
         * {@code neuronList}.
         */
        SerializationProxy(long nextId,
                           int featureSize,
                           Neuron[] neuronList,
                           long[][] neighbourIdList) {
            this.nextId = nextId;
            this.featureSize = featureSize;
            this.neuronList = neuronList;
            this.neighbourIdList = neighbourIdList;
        }

        /**
         * Custom serialization.
         *
         * @return the {@link Network} for which this instance is the proxy.
         */
        private Object readResolve() {
            return new Network(nextId,
                               featureSize,
                               neuronList,
                               neighbourIdList);
        }
    }
}




© 2015 - 2024 Weber Informatics LLC | Privacy Policy