All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.random.SobolSequenceGenerator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.random;

import java.io.BufferedReader;
import java.io.IOException;
import java.io.InputStream;
import java.io.InputStreamReader;
import java.nio.charset.Charset;
import java.util.Arrays;
import java.util.NoSuchElementException;
import java.util.StringTokenizer;

import org.apache.commons.math3.exception.MathInternalError;
import org.apache.commons.math3.exception.MathParseException;
import org.apache.commons.math3.exception.NotPositiveException;
import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of a Sobol sequence.
 * 

* A Sobol sequence is a low-discrepancy sequence with the property that for all values of N, * its subsequence (x1, ... xN) has a low discrepancy. It can be used to generate pseudo-random * points in a space S, which are equi-distributed. *

* The implementation already comes with support for up to 1000 dimensions with direction numbers * calculated from Stephen Joe and Frances Kuo. *

* The generator supports two modes: *

    *
  • sequential generation of points: {@link #nextVector()}
  • *
  • random access to the i-th point in the sequence: {@link #skipTo(int)}
  • *
* * @see Sobol sequence (Wikipedia) * @see Sobol sequence direction numbers * * @since 3.3 */ public class SobolSequenceGenerator implements RandomVectorGenerator { /** The number of bits to use. */ private static final int BITS = 52; /** The scaling factor. */ private static final double SCALE = FastMath.pow(2, BITS); /** The maximum supported space dimension. */ private static final int MAX_DIMENSION = 1000; /** The resource containing the direction numbers. */ private static final String RESOURCE_NAME = "/assets/org/apache/commons/math3/random/new-joe-kuo-6.1000"; /** Character set for file input. */ private static final String FILE_CHARSET = "US-ASCII"; /** Space dimension. */ private final int dimension; /** The current index in the sequence. */ private int count = 0; /** The direction vector for each component. */ private final long[][] direction; /** The current state. */ private final long[] x; /** * Construct a new Sobol sequence generator for the given space dimension. * * @param dimension the space dimension * @throws OutOfRangeException if the space dimension is outside the allowed range of [1, 1000] */ public SobolSequenceGenerator(final int dimension) throws OutOfRangeException { if (dimension < 1 || dimension > MAX_DIMENSION) { throw new OutOfRangeException(dimension, 1, MAX_DIMENSION); } // initialize the other dimensions with direction numbers from a resource final InputStream is = getClass().getResourceAsStream(RESOURCE_NAME); if (is == null) { throw new MathInternalError(); } this.dimension = dimension; // init data structures direction = new long[dimension][BITS + 1]; x = new long[dimension]; try { initFromStream(is); } catch (IOException e) { // the internal resource file could not be read -> should not happen throw new MathInternalError(); } catch (MathParseException e) { // the internal resource file could not be parsed -> should not happen throw new MathInternalError(); } finally { try { is.close(); } catch (IOException e) { // NOPMD // ignore } } } /** * Construct a new Sobol sequence generator for the given space dimension with * direction vectors loaded from the given stream. *

* The expected format is identical to the files available from * Stephen Joe and Frances Kuo. * The first line will be ignored as it is assumed to contain only the column headers. * The columns are: *

    *
  • d: the dimension
  • *
  • s: the degree of the primitive polynomial
  • *
  • a: the number representing the coefficients
  • *
  • m: the list of initial direction numbers
  • *
* Example: *
     * d       s       a       m_i
     * 2       1       0       1
     * 3       2       1       1 3
     * 
*

* The input stream must be an ASCII text containing one valid direction vector per line. * * @param dimension the space dimension * @param is the stream to read the direction vectors from * @throws NotStrictlyPositiveException if the space dimension is < 1 * @throws OutOfRangeException if the space dimension is outside the range [1, max], where * max refers to the maximum dimension found in the input stream * @throws MathParseException if the content in the stream could not be parsed successfully * @throws IOException if an error occurs while reading from the input stream */ public SobolSequenceGenerator(final int dimension, final InputStream is) throws NotStrictlyPositiveException, MathParseException, IOException { if (dimension < 1) { throw new NotStrictlyPositiveException(dimension); } this.dimension = dimension; // init data structures direction = new long[dimension][BITS + 1]; x = new long[dimension]; // initialize the other dimensions with direction numbers from the stream int lastDimension = initFromStream(is); if (lastDimension < dimension) { throw new OutOfRangeException(dimension, 1, lastDimension); } } /** * Load the direction vector for each dimension from the given stream. *

* The input stream must be an ASCII text containing one * valid direction vector per line. * * @param is the input stream to read the direction vector from * @return the last dimension that has been read from the input stream * @throws IOException if the stream could not be read * @throws MathParseException if the content could not be parsed successfully */ private int initFromStream(final InputStream is) throws MathParseException, IOException { // special case: dimension 1 -> use unit initialization for (int i = 1; i <= BITS; i++) { direction[0][i] = 1l << (BITS - i); } final Charset charset = Charset.forName(FILE_CHARSET); final BufferedReader reader = new BufferedReader(new InputStreamReader(is, charset)); int dim = -1; try { // ignore first line reader.readLine(); int lineNumber = 2; int index = 1; String line = null; while ( (line = reader.readLine()) != null) { StringTokenizer st = new StringTokenizer(line, " "); try { dim = Integer.parseInt(st.nextToken()); if (dim >= 2 && dim <= dimension) { // we have found the right dimension final int s = Integer.parseInt(st.nextToken()); final int a = Integer.parseInt(st.nextToken()); final int[] m = new int[s + 1]; for (int i = 1; i <= s; i++) { m[i] = Integer.parseInt(st.nextToken()); } initDirectionVector(index++, a, m); } if (dim > dimension) { return dim; } } catch (NoSuchElementException e) { throw new MathParseException(line, lineNumber); } catch (NumberFormatException e) { throw new MathParseException(line, lineNumber); } lineNumber++; } } finally { reader.close(); } return dim; } /** * Calculate the direction numbers from the given polynomial. * * @param d the dimension, zero-based * @param a the coefficients of the primitive polynomial * @param m the initial direction numbers */ private void initDirectionVector(final int d, final int a, final int[] m) { final int s = m.length - 1; for (int i = 1; i <= s; i++) { direction[d][i] = ((long) m[i]) << (BITS - i); } for (int i = s + 1; i <= BITS; i++) { direction[d][i] = direction[d][i - s] ^ (direction[d][i - s] >> s); for (int k = 1; k <= s - 1; k++) { direction[d][i] ^= ((a >> (s - 1 - k)) & 1) * direction[d][i - k]; } } } /** {@inheritDoc} */ public double[] nextVector() { final double[] v = new double[dimension]; if (count == 0) { count++; return v; } // find the index c of the rightmost 0 int c = 1; int value = count - 1; while ((value & 1) == 1) { value >>= 1; c++; } for (int i = 0; i < dimension; i++) { x[i] ^= direction[i][c]; v[i] = (double) x[i] / SCALE; } count++; return v; } /** * Skip to the i-th point in the Sobol sequence. *

* This operation can be performed in O(1). * * @param index the index in the sequence to skip to * @return the i-th point in the Sobol sequence * @throws NotPositiveException if index < 0 */ public double[] skipTo(final int index) throws NotPositiveException { if (index == 0) { // reset x vector Arrays.fill(x, 0); } else { final int i = index - 1; final long grayCode = i ^ (i >> 1); // compute the gray code of i = i XOR floor(i / 2) for (int j = 0; j < dimension; j++) { long result = 0; for (int k = 1; k <= BITS; k++) { final long shift = grayCode >> (k - 1); if (shift == 0) { // stop, as all remaining bits will be zero break; } // the k-th bit of i final long ik = shift & 1; result ^= ik * direction[j][k]; } x[j] = result; } } count = index; return nextVector(); } /** * Returns the index i of the next point in the Sobol sequence that will be returned * by calling {@link #nextVector()}. * * @return the index of the next point */ public int getNextIndex() { return count; } }





© 2015 - 2024 Weber Informatics LLC | Privacy Policy