All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.transform.FastFourierTransformer Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.transform;

import java.io.Serializable;
import java.lang.reflect.Array;

import org.apache.commons.math3.analysis.FunctionUtils;
import org.apache.commons.math3.analysis.UnivariateFunction;
import org.apache.commons.math3.complex.Complex;
import org.apache.commons.math3.exception.DimensionMismatchException;
import org.apache.commons.math3.exception.MathIllegalArgumentException;
import org.apache.commons.math3.exception.MathIllegalStateException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.ArithmeticUtils;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.MathArrays;

/**
 * Implements the Fast Fourier Transform for transformation of one-dimensional
 * real or complex data sets. For reference, see Applied Numerical Linear
 * Algebra, ISBN 0898713897, chapter 6.
 * 

* There are several variants of the discrete Fourier transform, with various * normalization conventions, which are specified by the parameter * {@link DftNormalization}. *

* The current implementation of the discrete Fourier transform as a fast * Fourier transform requires the length of the data set to be a power of 2. * This greatly simplifies and speeds up the code. Users can pad the data with * zeros to meet this requirement. There are other flavors of FFT, for * reference, see S. Winograd, * On computing the discrete Fourier transform, Mathematics of * Computation, 32 (1978), 175 - 199. * * @see DftNormalization * @since 1.2 */ public class FastFourierTransformer implements Serializable { /** Serializable version identifier. */ static final long serialVersionUID = 20120210L; /** * {@code W_SUB_N_R[i]} is the real part of * {@code exp(- 2 * i * pi / n)}: * {@code W_SUB_N_R[i] = cos(2 * pi/ n)}, where {@code n = 2^i}. */ private static final double[] W_SUB_N_R = { 0x1.0p0, -0x1.0p0, 0x1.1a62633145c07p-54, 0x1.6a09e667f3bcdp-1 , 0x1.d906bcf328d46p-1, 0x1.f6297cff75cbp-1, 0x1.fd88da3d12526p-1, 0x1.ff621e3796d7ep-1 , 0x1.ffd886084cd0dp-1, 0x1.fff62169b92dbp-1, 0x1.fffd8858e8a92p-1, 0x1.ffff621621d02p-1 , 0x1.ffffd88586ee6p-1, 0x1.fffff62161a34p-1, 0x1.fffffd8858675p-1, 0x1.ffffff621619cp-1 , 0x1.ffffffd885867p-1, 0x1.fffffff62161ap-1, 0x1.fffffffd88586p-1, 0x1.ffffffff62162p-1 , 0x1.ffffffffd8858p-1, 0x1.fffffffff6216p-1, 0x1.fffffffffd886p-1, 0x1.ffffffffff621p-1 , 0x1.ffffffffffd88p-1, 0x1.fffffffffff62p-1, 0x1.fffffffffffd9p-1, 0x1.ffffffffffff6p-1 , 0x1.ffffffffffffep-1, 0x1.fffffffffffffp-1, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0, 0x1.0p0 , 0x1.0p0, 0x1.0p0, 0x1.0p0 }; /** * {@code W_SUB_N_I[i]} is the imaginary part of * {@code exp(- 2 * i * pi / n)}: * {@code W_SUB_N_I[i] = -sin(2 * pi/ n)}, where {@code n = 2^i}. */ private static final double[] W_SUB_N_I = { 0x1.1a62633145c07p-52, -0x1.1a62633145c07p-53, -0x1.0p0, -0x1.6a09e667f3bccp-1 , -0x1.87de2a6aea963p-2, -0x1.8f8b83c69a60ap-3, -0x1.917a6bc29b42cp-4, -0x1.91f65f10dd814p-5 , -0x1.92155f7a3667ep-6, -0x1.921d1fcdec784p-7, -0x1.921f0fe670071p-8, -0x1.921f8becca4bap-9 , -0x1.921faaee6472dp-10, -0x1.921fb2aecb36p-11, -0x1.921fb49ee4ea6p-12, -0x1.921fb51aeb57bp-13 , -0x1.921fb539ecf31p-14, -0x1.921fb541ad59ep-15, -0x1.921fb5439d73ap-16, -0x1.921fb544197ap-17 , -0x1.921fb544387bap-18, -0x1.921fb544403c1p-19, -0x1.921fb544422c2p-20, -0x1.921fb54442a83p-21 , -0x1.921fb54442c73p-22, -0x1.921fb54442cefp-23, -0x1.921fb54442d0ep-24, -0x1.921fb54442d15p-25 , -0x1.921fb54442d17p-26, -0x1.921fb54442d18p-27, -0x1.921fb54442d18p-28, -0x1.921fb54442d18p-29 , -0x1.921fb54442d18p-30, -0x1.921fb54442d18p-31, -0x1.921fb54442d18p-32, -0x1.921fb54442d18p-33 , -0x1.921fb54442d18p-34, -0x1.921fb54442d18p-35, -0x1.921fb54442d18p-36, -0x1.921fb54442d18p-37 , -0x1.921fb54442d18p-38, -0x1.921fb54442d18p-39, -0x1.921fb54442d18p-40, -0x1.921fb54442d18p-41 , -0x1.921fb54442d18p-42, -0x1.921fb54442d18p-43, -0x1.921fb54442d18p-44, -0x1.921fb54442d18p-45 , -0x1.921fb54442d18p-46, -0x1.921fb54442d18p-47, -0x1.921fb54442d18p-48, -0x1.921fb54442d18p-49 , -0x1.921fb54442d18p-50, -0x1.921fb54442d18p-51, -0x1.921fb54442d18p-52, -0x1.921fb54442d18p-53 , -0x1.921fb54442d18p-54, -0x1.921fb54442d18p-55, -0x1.921fb54442d18p-56, -0x1.921fb54442d18p-57 , -0x1.921fb54442d18p-58, -0x1.921fb54442d18p-59, -0x1.921fb54442d18p-60 }; /** The type of DFT to be performed. */ private final DftNormalization normalization; /** * Creates a new instance of this class, with various normalization * conventions. * * @param normalization the type of normalization to be applied to the * transformed data */ public FastFourierTransformer(final DftNormalization normalization) { this.normalization = normalization; } /** * Performs identical index bit reversal shuffles on two arrays of identical * size. Each element in the array is swapped with another element based on * the bit-reversal of the index. For example, in an array with length 16, * item at binary index 0011 (decimal 3) would be swapped with the item at * binary index 1100 (decimal 12). * * @param a the first array to be shuffled * @param b the second array to be shuffled */ private static void bitReversalShuffle2(double[] a, double[] b) { final int n = a.length; assert b.length == n; final int halfOfN = n >> 1; int j = 0; for (int i = 0; i < n; i++) { if (i < j) { // swap indices i & j double temp = a[i]; a[i] = a[j]; a[j] = temp; temp = b[i]; b[i] = b[j]; b[j] = temp; } int k = halfOfN; while (k <= j && k > 0) { j -= k; k >>= 1; } j += k; } } /** * Applies the proper normalization to the specified transformed data. * * @param dataRI the unscaled transformed data * @param normalization the normalization to be applied * @param type the type of transform (forward, inverse) which resulted in the specified data */ private static void normalizeTransformedData(final double[][] dataRI, final DftNormalization normalization, final TransformType type) { final double[] dataR = dataRI[0]; final double[] dataI = dataRI[1]; final int n = dataR.length; assert dataI.length == n; switch (normalization) { case STANDARD: if (type == TransformType.INVERSE) { final double scaleFactor = 1.0 / ((double) n); for (int i = 0; i < n; i++) { dataR[i] *= scaleFactor; dataI[i] *= scaleFactor; } } break; case UNITARY: final double scaleFactor = 1.0 / FastMath.sqrt(n); for (int i = 0; i < n; i++) { dataR[i] *= scaleFactor; dataI[i] *= scaleFactor; } break; default: /* * This should never occur in normal conditions. However this * clause has been added as a safeguard if other types of * normalizations are ever implemented, and the corresponding * test is forgotten in the present switch. */ throw new MathIllegalStateException(); } } /** * Computes the standard transform of the specified complex data. The * computation is done in place. The input data is laid out as follows *

    *
  • {@code dataRI[0][i]} is the real part of the {@code i}-th data point,
  • *
  • {@code dataRI[1][i]} is the imaginary part of the {@code i}-th data point.
  • *
* * @param dataRI the two dimensional array of real and imaginary parts of the data * @param normalization the normalization to be applied to the transformed data * @param type the type of transform (forward, inverse) to be performed * @throws DimensionMismatchException if the number of rows of the specified * array is not two, or the array is not rectangular * @throws MathIllegalArgumentException if the number of data points is not * a power of two */ public static void transformInPlace(final double[][] dataRI, final DftNormalization normalization, final TransformType type) { if (dataRI.length != 2) { throw new DimensionMismatchException(dataRI.length, 2); } final double[] dataR = dataRI[0]; final double[] dataI = dataRI[1]; if (dataR.length != dataI.length) { throw new DimensionMismatchException(dataI.length, dataR.length); } final int n = dataR.length; if (!ArithmeticUtils.isPowerOfTwo(n)) { throw new MathIllegalArgumentException( LocalizedFormats.NOT_POWER_OF_TWO_CONSIDER_PADDING, Integer.valueOf(n)); } if (n == 1) { return; } else if (n == 2) { final double srcR0 = dataR[0]; final double srcI0 = dataI[0]; final double srcR1 = dataR[1]; final double srcI1 = dataI[1]; // X_0 = x_0 + x_1 dataR[0] = srcR0 + srcR1; dataI[0] = srcI0 + srcI1; // X_1 = x_0 - x_1 dataR[1] = srcR0 - srcR1; dataI[1] = srcI0 - srcI1; normalizeTransformedData(dataRI, normalization, type); return; } bitReversalShuffle2(dataR, dataI); // Do 4-term DFT. if (type == TransformType.INVERSE) { for (int i0 = 0; i0 < n; i0 += 4) { final int i1 = i0 + 1; final int i2 = i0 + 2; final int i3 = i0 + 3; final double srcR0 = dataR[i0]; final double srcI0 = dataI[i0]; final double srcR1 = dataR[i2]; final double srcI1 = dataI[i2]; final double srcR2 = dataR[i1]; final double srcI2 = dataI[i1]; final double srcR3 = dataR[i3]; final double srcI3 = dataI[i3]; // 4-term DFT // X_0 = x_0 + x_1 + x_2 + x_3 dataR[i0] = srcR0 + srcR1 + srcR2 + srcR3; dataI[i0] = srcI0 + srcI1 + srcI2 + srcI3; // X_1 = x_0 - x_2 + j * (x_3 - x_1) dataR[i1] = srcR0 - srcR2 + (srcI3 - srcI1); dataI[i1] = srcI0 - srcI2 + (srcR1 - srcR3); // X_2 = x_0 - x_1 + x_2 - x_3 dataR[i2] = srcR0 - srcR1 + srcR2 - srcR3; dataI[i2] = srcI0 - srcI1 + srcI2 - srcI3; // X_3 = x_0 - x_2 + j * (x_1 - x_3) dataR[i3] = srcR0 - srcR2 + (srcI1 - srcI3); dataI[i3] = srcI0 - srcI2 + (srcR3 - srcR1); } } else { for (int i0 = 0; i0 < n; i0 += 4) { final int i1 = i0 + 1; final int i2 = i0 + 2; final int i3 = i0 + 3; final double srcR0 = dataR[i0]; final double srcI0 = dataI[i0]; final double srcR1 = dataR[i2]; final double srcI1 = dataI[i2]; final double srcR2 = dataR[i1]; final double srcI2 = dataI[i1]; final double srcR3 = dataR[i3]; final double srcI3 = dataI[i3]; // 4-term DFT // X_0 = x_0 + x_1 + x_2 + x_3 dataR[i0] = srcR0 + srcR1 + srcR2 + srcR3; dataI[i0] = srcI0 + srcI1 + srcI2 + srcI3; // X_1 = x_0 - x_2 + j * (x_3 - x_1) dataR[i1] = srcR0 - srcR2 + (srcI1 - srcI3); dataI[i1] = srcI0 - srcI2 + (srcR3 - srcR1); // X_2 = x_0 - x_1 + x_2 - x_3 dataR[i2] = srcR0 - srcR1 + srcR2 - srcR3; dataI[i2] = srcI0 - srcI1 + srcI2 - srcI3; // X_3 = x_0 - x_2 + j * (x_1 - x_3) dataR[i3] = srcR0 - srcR2 + (srcI3 - srcI1); dataI[i3] = srcI0 - srcI2 + (srcR1 - srcR3); } } int lastN0 = 4; int lastLogN0 = 2; while (lastN0 < n) { int n0 = lastN0 << 1; int logN0 = lastLogN0 + 1; double wSubN0R = W_SUB_N_R[logN0]; double wSubN0I = W_SUB_N_I[logN0]; if (type == TransformType.INVERSE) { wSubN0I = -wSubN0I; } // Combine even/odd transforms of size lastN0 into a transform of size N0 (lastN0 * 2). for (int destEvenStartIndex = 0; destEvenStartIndex < n; destEvenStartIndex += n0) { int destOddStartIndex = destEvenStartIndex + lastN0; double wSubN0ToRR = 1; double wSubN0ToRI = 0; for (int r = 0; r < lastN0; r++) { double grR = dataR[destEvenStartIndex + r]; double grI = dataI[destEvenStartIndex + r]; double hrR = dataR[destOddStartIndex + r]; double hrI = dataI[destOddStartIndex + r]; // dest[destEvenStartIndex + r] = Gr + WsubN0ToR * Hr dataR[destEvenStartIndex + r] = grR + wSubN0ToRR * hrR - wSubN0ToRI * hrI; dataI[destEvenStartIndex + r] = grI + wSubN0ToRR * hrI + wSubN0ToRI * hrR; // dest[destOddStartIndex + r] = Gr - WsubN0ToR * Hr dataR[destOddStartIndex + r] = grR - (wSubN0ToRR * hrR - wSubN0ToRI * hrI); dataI[destOddStartIndex + r] = grI - (wSubN0ToRR * hrI + wSubN0ToRI * hrR); // WsubN0ToR *= WsubN0R double nextWsubN0ToRR = wSubN0ToRR * wSubN0R - wSubN0ToRI * wSubN0I; double nextWsubN0ToRI = wSubN0ToRR * wSubN0I + wSubN0ToRI * wSubN0R; wSubN0ToRR = nextWsubN0ToRR; wSubN0ToRI = nextWsubN0ToRI; } } lastN0 = n0; lastLogN0 = logN0; } normalizeTransformedData(dataRI, normalization, type); } /** * Returns the (forward, inverse) transform of the specified real data set. * * @param f the real data array to be transformed * @param type the type of transform (forward, inverse) to be performed * @return the complex transformed array * @throws MathIllegalArgumentException if the length of the data array is not a power of two */ public Complex[] transform(final double[] f, final TransformType type) { final double[][] dataRI = new double[][] { MathArrays.copyOf(f, f.length), new double[f.length] }; transformInPlace(dataRI, normalization, type); return TransformUtils.createComplexArray(dataRI); } /** * Returns the (forward, inverse) transform of the specified real function, * sampled on the specified interval. * * @param f the function to be sampled and transformed * @param min the (inclusive) lower bound for the interval * @param max the (exclusive) upper bound for the interval * @param n the number of sample points * @param type the type of transform (forward, inverse) to be performed * @return the complex transformed array * @throws org.apache.commons.math3.exception.NumberIsTooLargeException * if the lower bound is greater than, or equal to the upper bound * @throws org.apache.commons.math3.exception.NotStrictlyPositiveException * if the number of sample points {@code n} is negative * @throws MathIllegalArgumentException if the number of sample points * {@code n} is not a power of two */ public Complex[] transform(final UnivariateFunction f, final double min, final double max, final int n, final TransformType type) { final double[] data = FunctionUtils.sample(f, min, max, n); return transform(data, type); } /** * Returns the (forward, inverse) transform of the specified complex data set. * * @param f the complex data array to be transformed * @param type the type of transform (forward, inverse) to be performed * @return the complex transformed array * @throws MathIllegalArgumentException if the length of the data array is not a power of two */ public Complex[] transform(final Complex[] f, final TransformType type) { final double[][] dataRI = TransformUtils.createRealImaginaryArray(f); transformInPlace(dataRI, normalization, type); return TransformUtils.createComplexArray(dataRI); } /** * Performs a multi-dimensional Fourier transform on a given array. Use * {@link #transform(Complex[], TransformType)} in a row-column * implementation in any number of dimensions with * O(N×log(N)) complexity with * N = n1 × n2 ×n3 × ... * × nd, where nk is the number of elements in * dimension k, and d is the total number of dimensions. * * @param mdca Multi-Dimensional Complex Array, i.e. {@code Complex[][][][]} * @param type the type of transform (forward, inverse) to be performed * @return transform of {@code mdca} as a Multi-Dimensional Complex Array, i.e. {@code Complex[][][][]} * @throws IllegalArgumentException if any dimension is not a power of two * @deprecated see MATH-736 */ @Deprecated public Object mdfft(Object mdca, TransformType type) { MultiDimensionalComplexMatrix mdcm = (MultiDimensionalComplexMatrix) new MultiDimensionalComplexMatrix(mdca).clone(); int[] dimensionSize = mdcm.getDimensionSizes(); //cycle through each dimension for (int i = 0; i < dimensionSize.length; i++) { mdfft(mdcm, type, i, new int[0]); } return mdcm.getArray(); } /** * Performs one dimension of a multi-dimensional Fourier transform. * * @param mdcm input matrix * @param type the type of transform (forward, inverse) to be performed * @param d index of the dimension to process * @param subVector recursion subvector * @throws IllegalArgumentException if any dimension is not a power of two * @deprecated see MATH-736 */ @Deprecated private void mdfft(MultiDimensionalComplexMatrix mdcm, TransformType type, int d, int[] subVector) { int[] dimensionSize = mdcm.getDimensionSizes(); //if done if (subVector.length == dimensionSize.length) { Complex[] temp = new Complex[dimensionSize[d]]; for (int i = 0; i < dimensionSize[d]; i++) { //fft along dimension d subVector[d] = i; temp[i] = mdcm.get(subVector); } temp = transform(temp, type); for (int i = 0; i < dimensionSize[d]; i++) { subVector[d] = i; mdcm.set(temp[i], subVector); } } else { int[] vector = new int[subVector.length + 1]; System.arraycopy(subVector, 0, vector, 0, subVector.length); if (subVector.length == d) { //value is not important once the recursion is done. //then an fft will be applied along the dimension d. vector[d] = 0; mdfft(mdcm, type, d, vector); } else { for (int i = 0; i < dimensionSize[subVector.length]; i++) { vector[subVector.length] = i; //further split along the next dimension mdfft(mdcm, type, d, vector); } } } } /** * Complex matrix implementation. Not designed for synchronized access may * eventually be replaced by jsr-83 of the java community process * http://jcp.org/en/jsr/detail?id=83 * may require additional exception throws for other basic requirements. * * @deprecated see MATH-736 */ @Deprecated private static class MultiDimensionalComplexMatrix implements Cloneable { /** Size in all dimensions. */ protected int[] dimensionSize; /** Storage array. */ protected Object multiDimensionalComplexArray; /** * Simple constructor. * * @param multiDimensionalComplexArray array containing the matrix * elements */ MultiDimensionalComplexMatrix(Object multiDimensionalComplexArray) { this.multiDimensionalComplexArray = multiDimensionalComplexArray; // count dimensions int numOfDimensions = 0; for (Object lastDimension = multiDimensionalComplexArray; lastDimension instanceof Object[];) { final Object[] array = (Object[]) lastDimension; numOfDimensions++; lastDimension = array[0]; } // allocate array with exact count dimensionSize = new int[numOfDimensions]; // fill array numOfDimensions = 0; for (Object lastDimension = multiDimensionalComplexArray; lastDimension instanceof Object[];) { final Object[] array = (Object[]) lastDimension; dimensionSize[numOfDimensions++] = array.length; lastDimension = array[0]; } } /** * Get a matrix element. * * @param vector indices of the element * @return matrix element * @exception DimensionMismatchException if dimensions do not match */ public Complex get(int... vector) throws DimensionMismatchException { if (vector == null) { if (dimensionSize.length > 0) { throw new DimensionMismatchException( 0, dimensionSize.length); } return null; } if (vector.length != dimensionSize.length) { throw new DimensionMismatchException( vector.length, dimensionSize.length); } Object lastDimension = multiDimensionalComplexArray; for (int i = 0; i < dimensionSize.length; i++) { lastDimension = ((Object[]) lastDimension)[vector[i]]; } return (Complex) lastDimension; } /** * Set a matrix element. * * @param magnitude magnitude of the element * @param vector indices of the element * @return the previous value * @exception DimensionMismatchException if dimensions do not match */ public Complex set(Complex magnitude, int... vector) throws DimensionMismatchException { if (vector == null) { if (dimensionSize.length > 0) { throw new DimensionMismatchException( 0, dimensionSize.length); } return null; } if (vector.length != dimensionSize.length) { throw new DimensionMismatchException( vector.length, dimensionSize.length); } Object[] lastDimension = (Object[]) multiDimensionalComplexArray; for (int i = 0; i < dimensionSize.length - 1; i++) { lastDimension = (Object[]) lastDimension[vector[i]]; } Complex lastValue = (Complex) lastDimension[vector[dimensionSize.length - 1]]; lastDimension[vector[dimensionSize.length - 1]] = magnitude; return lastValue; } /** * Get the size in all dimensions. * * @return size in all dimensions */ public int[] getDimensionSizes() { return dimensionSize.clone(); } /** * Get the underlying storage array. * * @return underlying storage array */ public Object getArray() { return multiDimensionalComplexArray; } /** {@inheritDoc} */ @Override public Object clone() { MultiDimensionalComplexMatrix mdcm = new MultiDimensionalComplexMatrix(Array.newInstance( Complex.class, dimensionSize)); clone(mdcm); return mdcm; } /** * Copy contents of current array into mdcm. * * @param mdcm array where to copy data */ private void clone(MultiDimensionalComplexMatrix mdcm) { int[] vector = new int[dimensionSize.length]; int size = 1; for (int i = 0; i < dimensionSize.length; i++) { size *= dimensionSize[i]; } int[][] vectorList = new int[size][dimensionSize.length]; for (int[] nextVector : vectorList) { System.arraycopy(vector, 0, nextVector, 0, dimensionSize.length); for (int i = 0; i < dimensionSize.length; i++) { vector[i]++; if (vector[i] < dimensionSize[i]) { break; } else { vector[i] = 0; } } } for (int[] nextVector : vectorList) { mdcm.set(get(nextVector), nextVector); } } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy