All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.util.MathUtils Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.util;

import java.util.Arrays;

import org.apache.commons.math3.RealFieldElement;
import org.apache.commons.math3.exception.MathArithmeticException;
import org.apache.commons.math3.exception.NotFiniteNumberException;
import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.util.Localizable;
import org.apache.commons.math3.exception.util.LocalizedFormats;

/**
 * Miscellaneous utility functions.
 *
 * @see ArithmeticUtils
 * @see Precision
 * @see MathArrays
 *
 */
public final class MathUtils {
    /**
     * \(2\pi\)
     * @since 2.1
     */
    public static final double TWO_PI = 2 * FastMath.PI;

    /**
     * \(\pi^2\)
     * @since 3.4
     */
    public static final double PI_SQUARED = FastMath.PI * FastMath.PI;


    /**
     * Class contains only static methods.
     */
    private MathUtils() {}


    /**
     * Returns an integer hash code representing the given double value.
     *
     * @param value the value to be hashed
     * @return the hash code
     */
    public static int hash(double value) {
        return new Double(value).hashCode();
    }

    /**
     * Returns {@code true} if the values are equal according to semantics of
     * {@link Double#equals(Object)}.
     *
     * @param x Value
     * @param y Value
     * @return {@code new Double(x).equals(new Double(y))}
     */
    public static boolean equals(double x, double y) {
        return new Double(x).equals(new Double(y));
    }

    /**
     * Returns an integer hash code representing the given double array.
     *
     * @param value the value to be hashed (may be null)
     * @return the hash code
     * @since 1.2
     */
    public static int hash(double[] value) {
        return Arrays.hashCode(value);
    }

    /**
     * Normalize an angle in a 2π wide interval around a center value.
     * 

This method has three main uses:

*
    *
  • normalize an angle between 0 and 2π:
    * {@code a = MathUtils.normalizeAngle(a, FastMath.PI);}
  • *
  • normalize an angle between -π and +π
    * {@code a = MathUtils.normalizeAngle(a, 0.0);}
  • *
  • compute the angle between two defining angular positions:
    * {@code angle = MathUtils.normalizeAngle(end, start) - start;}
  • *
*

Note that due to numerical accuracy and since π cannot be represented * exactly, the result interval is closed, it cannot be half-closed * as would be more satisfactory in a purely mathematical view.

* @param a angle to normalize * @param center center of the desired 2π interval for the result * @return a-2kπ with integer k and center-π <= a-2kπ <= center+π * @since 1.2 */ public static double normalizeAngle(double a, double center) { return a - TWO_PI * FastMath.floor((a + FastMath.PI - center) / TWO_PI); } /** Find the maximum of two field elements. * @param the type of the field elements * @param e1 first element * @param e2 second element * @return max(a1, e2) * @since 3.6 */ public static > T max(final T e1, final T e2) { return e1.subtract(e2).getReal() >= 0 ? e1 : e2; } /** Find the minimum of two field elements. * @param the type of the field elements * @param e1 first element * @param e2 second element * @return min(a1, e2) * @since 3.6 */ public static > T min(final T e1, final T e2) { return e1.subtract(e2).getReal() >= 0 ? e2 : e1; } /** *

Reduce {@code |a - offset|} to the primary interval * {@code [0, |period|)}.

* *

Specifically, the value returned is
* {@code a - |period| * floor((a - offset) / |period|) - offset}.

* *

If any of the parameters are {@code NaN} or infinite, the result is * {@code NaN}.

* * @param a Value to reduce. * @param period Period. * @param offset Value that will be mapped to {@code 0}. * @return the value, within the interval {@code [0 |period|)}, * that corresponds to {@code a}. */ public static double reduce(double a, double period, double offset) { final double p = FastMath.abs(period); return a - p * FastMath.floor((a - offset) / p) - offset; } /** * Returns the first argument with the sign of the second argument. * * @param magnitude Magnitude of the returned value. * @param sign Sign of the returned value. * @return a value with magnitude equal to {@code magnitude} and with the * same sign as the {@code sign} argument. * @throws MathArithmeticException if {@code magnitude == Byte.MIN_VALUE} * and {@code sign >= 0}. */ public static byte copySign(byte magnitude, byte sign) throws MathArithmeticException { if ((magnitude >= 0 && sign >= 0) || (magnitude < 0 && sign < 0)) { // Sign is OK. return magnitude; } else if (sign >= 0 && magnitude == Byte.MIN_VALUE) { throw new MathArithmeticException(LocalizedFormats.OVERFLOW); } else { return (byte) -magnitude; // Flip sign. } } /** * Returns the first argument with the sign of the second argument. * * @param magnitude Magnitude of the returned value. * @param sign Sign of the returned value. * @return a value with magnitude equal to {@code magnitude} and with the * same sign as the {@code sign} argument. * @throws MathArithmeticException if {@code magnitude == Short.MIN_VALUE} * and {@code sign >= 0}. */ public static short copySign(short magnitude, short sign) throws MathArithmeticException { if ((magnitude >= 0 && sign >= 0) || (magnitude < 0 && sign < 0)) { // Sign is OK. return magnitude; } else if (sign >= 0 && magnitude == Short.MIN_VALUE) { throw new MathArithmeticException(LocalizedFormats.OVERFLOW); } else { return (short) -magnitude; // Flip sign. } } /** * Returns the first argument with the sign of the second argument. * * @param magnitude Magnitude of the returned value. * @param sign Sign of the returned value. * @return a value with magnitude equal to {@code magnitude} and with the * same sign as the {@code sign} argument. * @throws MathArithmeticException if {@code magnitude == Integer.MIN_VALUE} * and {@code sign >= 0}. */ public static int copySign(int magnitude, int sign) throws MathArithmeticException { if ((magnitude >= 0 && sign >= 0) || (magnitude < 0 && sign < 0)) { // Sign is OK. return magnitude; } else if (sign >= 0 && magnitude == Integer.MIN_VALUE) { throw new MathArithmeticException(LocalizedFormats.OVERFLOW); } else { return -magnitude; // Flip sign. } } /** * Returns the first argument with the sign of the second argument. * * @param magnitude Magnitude of the returned value. * @param sign Sign of the returned value. * @return a value with magnitude equal to {@code magnitude} and with the * same sign as the {@code sign} argument. * @throws MathArithmeticException if {@code magnitude == Long.MIN_VALUE} * and {@code sign >= 0}. */ public static long copySign(long magnitude, long sign) throws MathArithmeticException { if ((magnitude >= 0 && sign >= 0) || (magnitude < 0 && sign < 0)) { // Sign is OK. return magnitude; } else if (sign >= 0 && magnitude == Long.MIN_VALUE) { throw new MathArithmeticException(LocalizedFormats.OVERFLOW); } else { return -magnitude; // Flip sign. } } /** * Check that the argument is a real number. * * @param x Argument. * @throws NotFiniteNumberException if {@code x} is not a * finite real number. */ public static void checkFinite(final double x) throws NotFiniteNumberException { if (Double.isInfinite(x) || Double.isNaN(x)) { throw new NotFiniteNumberException(x); } } /** * Check that all the elements are real numbers. * * @param val Arguments. * @throws NotFiniteNumberException if any values of the array is not a * finite real number. */ public static void checkFinite(final double[] val) throws NotFiniteNumberException { for (int i = 0; i < val.length; i++) { final double x = val[i]; if (Double.isInfinite(x) || Double.isNaN(x)) { throw new NotFiniteNumberException(LocalizedFormats.ARRAY_ELEMENT, x, i); } } } /** * Checks that an object is not null. * * @param o Object to be checked. * @param pattern Message pattern. * @param args Arguments to replace the placeholders in {@code pattern}. * @throws NullArgumentException if {@code o} is {@code null}. */ public static void checkNotNull(Object o, Localizable pattern, Object ... args) throws NullArgumentException { if (o == null) { throw new NullArgumentException(pattern, args); } } /** * Checks that an object is not null. * * @param o Object to be checked. * @throws NullArgumentException if {@code o} is {@code null}. */ public static void checkNotNull(Object o) throws NullArgumentException { if (o == null) { throw new NullArgumentException(); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy