All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.distribution.TDistribution Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.distribution;

import org.apache.commons.math3.exception.NotStrictlyPositiveException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.random.RandomGenerator;
import org.apache.commons.math3.random.Well19937c;
import org.apache.commons.math3.special.Beta;
import org.apache.commons.math3.special.Gamma;
import org.apache.commons.math3.util.FastMath;

/**
 * Implementation of Student's t-distribution.
 *
 * @see "Student's t-distribution (Wikipedia)"
 * @see "Student's t-distribution (MathWorld)"
 */
public class TDistribution extends AbstractRealDistribution {
    /**
     * Default inverse cumulative probability accuracy.
     * @since 2.1
     */
    public static final double DEFAULT_INVERSE_ABSOLUTE_ACCURACY = 1e-9;
    /** Serializable version identifier */
    private static final long serialVersionUID = -5852615386664158222L;
    /** The degrees of freedom. */
    private final double degreesOfFreedom;
    /** Inverse cumulative probability accuracy. */
    private final double solverAbsoluteAccuracy;
    /** Static computation factor based on degreesOfFreedom. */
    private final double factor;

    /**
     * Create a t distribution using the given degrees of freedom.
     * 

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param degreesOfFreedom Degrees of freedom. * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0} */ public TDistribution(double degreesOfFreedom) throws NotStrictlyPositiveException { this(degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Create a t distribution using the given degrees of freedom and the * specified inverse cumulative probability absolute accuracy. *

* Note: this constructor will implicitly create an instance of * {@link Well19937c} as random generator to be used for sampling only (see * {@link #sample()} and {@link #sample(int)}). In case no sampling is * needed for the created distribution, it is advised to pass {@code null} * as random generator via the appropriate constructors to avoid the * additional initialisation overhead. * * @param degreesOfFreedom Degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0} * @since 2.1 */ public TDistribution(double degreesOfFreedom, double inverseCumAccuracy) throws NotStrictlyPositiveException { this(new Well19937c(), degreesOfFreedom, inverseCumAccuracy); } /** * Creates a t distribution. * * @param rng Random number generator. * @param degreesOfFreedom Degrees of freedom. * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0} * @since 3.3 */ public TDistribution(RandomGenerator rng, double degreesOfFreedom) throws NotStrictlyPositiveException { this(rng, degreesOfFreedom, DEFAULT_INVERSE_ABSOLUTE_ACCURACY); } /** * Creates a t distribution. * * @param rng Random number generator. * @param degreesOfFreedom Degrees of freedom. * @param inverseCumAccuracy the maximum absolute error in inverse * cumulative probability estimates * (defaults to {@link #DEFAULT_INVERSE_ABSOLUTE_ACCURACY}). * @throws NotStrictlyPositiveException if {@code degreesOfFreedom <= 0} * @since 3.1 */ public TDistribution(RandomGenerator rng, double degreesOfFreedom, double inverseCumAccuracy) throws NotStrictlyPositiveException { super(rng); if (degreesOfFreedom <= 0) { throw new NotStrictlyPositiveException(LocalizedFormats.DEGREES_OF_FREEDOM, degreesOfFreedom); } this.degreesOfFreedom = degreesOfFreedom; solverAbsoluteAccuracy = inverseCumAccuracy; final double n = degreesOfFreedom; final double nPlus1Over2 = (n + 1) / 2; factor = Gamma.logGamma(nPlus1Over2) - 0.5 * (FastMath.log(FastMath.PI) + FastMath.log(n)) - Gamma.logGamma(n / 2); } /** * Access the degrees of freedom. * * @return the degrees of freedom. */ public double getDegreesOfFreedom() { return degreesOfFreedom; } /** {@inheritDoc} */ public double density(double x) { return FastMath.exp(logDensity(x)); } /** {@inheritDoc} */ @Override public double logDensity(double x) { final double n = degreesOfFreedom; final double nPlus1Over2 = (n + 1) / 2; return factor - nPlus1Over2 * FastMath.log(1 + x * x / n); } /** {@inheritDoc} */ public double cumulativeProbability(double x) { double ret; if (x == 0) { ret = 0.5; } else { double t = Beta.regularizedBeta( degreesOfFreedom / (degreesOfFreedom + (x * x)), 0.5 * degreesOfFreedom, 0.5); if (x < 0.0) { ret = 0.5 * t; } else { ret = 1.0 - 0.5 * t; } } return ret; } /** {@inheritDoc} */ @Override protected double getSolverAbsoluteAccuracy() { return solverAbsoluteAccuracy; } /** * {@inheritDoc} * * For degrees of freedom parameter {@code df}, the mean is *

    *
  • if {@code df > 1} then {@code 0},
  • *
  • else undefined ({@code Double.NaN}).
  • *
*/ public double getNumericalMean() { final double df = getDegreesOfFreedom(); if (df > 1) { return 0; } return Double.NaN; } /** * {@inheritDoc} * * For degrees of freedom parameter {@code df}, the variance is *
    *
  • if {@code df > 2} then {@code df / (df - 2)},
  • *
  • if {@code 1 < df <= 2} then positive infinity * ({@code Double.POSITIVE_INFINITY}),
  • *
  • else undefined ({@code Double.NaN}).
  • *
*/ public double getNumericalVariance() { final double df = getDegreesOfFreedom(); if (df > 2) { return df / (df - 2); } if (df > 1 && df <= 2) { return Double.POSITIVE_INFINITY; } return Double.NaN; } /** * {@inheritDoc} * * The lower bound of the support is always negative infinity no matter the * parameters. * * @return lower bound of the support (always * {@code Double.NEGATIVE_INFINITY}) */ public double getSupportLowerBound() { return Double.NEGATIVE_INFINITY; } /** * {@inheritDoc} * * The upper bound of the support is always positive infinity no matter the * parameters. * * @return upper bound of the support (always * {@code Double.POSITIVE_INFINITY}) */ public double getSupportUpperBound() { return Double.POSITIVE_INFINITY; } /** {@inheritDoc} */ public boolean isSupportLowerBoundInclusive() { return false; } /** {@inheritDoc} */ public boolean isSupportUpperBoundInclusive() { return false; } /** * {@inheritDoc} * * The support of this distribution is connected. * * @return {@code true} */ public boolean isSupportConnected() { return true; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy