All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.ml.neuralnet.oned.NeuronString Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */

package org.apache.commons.math3.ml.neuralnet.oned;

import java.io.Serializable;
import java.io.ObjectInputStream;
import org.apache.commons.math3.ml.neuralnet.Network;
import org.apache.commons.math3.ml.neuralnet.FeatureInitializer;
import org.apache.commons.math3.exception.NumberIsTooSmallException;
import org.apache.commons.math3.exception.OutOfRangeException;

/**
 * Neural network with the topology of a one-dimensional line.
 * Each neuron defines one point on the line.
 *
 * @since 3.3
 */
public class NeuronString implements Serializable {
    /** Serial version ID */
    private static final long serialVersionUID = 1L;
    /** Underlying network. */
    private final Network network;
    /** Number of neurons. */
    private final int size;
    /** Wrap. */
    private final boolean wrap;

    /**
     * Mapping of the 1D coordinate to the neuron identifiers
     * (attributed by the {@link #network} instance).
     */
    private final long[] identifiers;

    /**
     * Constructor with restricted access, solely used for deserialization.
     *
     * @param wrap Whether to wrap the dimension (i.e the first and last
     * neurons will be linked together).
     * @param featuresList Arrays that will initialize the features sets of
     * the network's neurons.
     * @throws NumberIsTooSmallException if {@code num < 2}.
     */
    NeuronString(boolean wrap,
                 double[][] featuresList) {
        size = featuresList.length;

        if (size < 2) {
            throw new NumberIsTooSmallException(size, 2, true);
        }

        this.wrap = wrap;

        final int fLen = featuresList[0].length;
        network = new Network(0, fLen);
        identifiers = new long[size];

        // Add neurons.
        for (int i = 0; i < size; i++) {
            identifiers[i] = network.createNeuron(featuresList[i]);
        }

        // Add links.
        createLinks();
    }

    /**
     * Creates a one-dimensional network:
     * Each neuron not located on the border of the mesh has two
     * neurons linked to it.
     * 
* The links are bi-directional. * Neurons created successively are neighbours (i.e. there are * links between them). *
* The topology of the network can also be a circle (if the * dimension is wrapped). * * @param num Number of neurons. * @param wrap Whether to wrap the dimension (i.e the first and last * neurons will be linked together). * @param featureInit Arrays that will initialize the features sets of * the network's neurons. * @throws NumberIsTooSmallException if {@code num < 2}. */ public NeuronString(int num, boolean wrap, FeatureInitializer[] featureInit) { if (num < 2) { throw new NumberIsTooSmallException(num, 2, true); } size = num; this.wrap = wrap; identifiers = new long[num]; final int fLen = featureInit.length; network = new Network(0, fLen); // Add neurons. for (int i = 0; i < num; i++) { final double[] features = new double[fLen]; for (int fIndex = 0; fIndex < fLen; fIndex++) { features[fIndex] = featureInit[fIndex].value(); } identifiers[i] = network.createNeuron(features); } // Add links. createLinks(); } /** * Retrieves the underlying network. * A reference is returned (enabling, for example, the network to be * trained). * This also implies that calling methods that modify the {@link Network} * topology may cause this class to become inconsistent. * * @return the network. */ public Network getNetwork() { return network; } /** * Gets the number of neurons. * * @return the number of neurons. */ public int getSize() { return size; } /** * Retrieves the features set from the neuron at location * {@code i} in the map. * * @param i Neuron index. * @return the features of the neuron at index {@code i}. * @throws OutOfRangeException if {@code i} is out of range. */ public double[] getFeatures(int i) { if (i < 0 || i >= size) { throw new OutOfRangeException(i, 0, size - 1); } return network.getNeuron(identifiers[i]).getFeatures(); } /** * Creates the neighbour relationships between neurons. */ private void createLinks() { for (int i = 0; i < size - 1; i++) { network.addLink(network.getNeuron(i), network.getNeuron(i + 1)); } for (int i = size - 1; i > 0; i--) { network.addLink(network.getNeuron(i), network.getNeuron(i - 1)); } if (wrap) { network.addLink(network.getNeuron(0), network.getNeuron(size - 1)); network.addLink(network.getNeuron(size - 1), network.getNeuron(0)); } } /** * Prevents proxy bypass. * * @param in Input stream. */ private void readObject(ObjectInputStream in) { throw new IllegalStateException(); } /** * Custom serialization. * * @return the proxy instance that will be actually serialized. */ private Object writeReplace() { final double[][] featuresList = new double[size][]; for (int i = 0; i < size; i++) { featuresList[i] = getFeatures(i); } return new SerializationProxy(wrap, featuresList); } /** * Serialization. */ private static class SerializationProxy implements Serializable { /** Serializable. */ private static final long serialVersionUID = 20130226L; /** Wrap. */ private final boolean wrap; /** Neurons' features. */ private final double[][] featuresList; /** * @param wrap Whether the dimension is wrapped. * @param featuresList List of neurons features. * {@code neuronList}. */ SerializationProxy(boolean wrap, double[][] featuresList) { this.wrap = wrap; this.featuresList = featuresList; } /** * Custom serialization. * * @return the {@link Neuron} for which this instance is the proxy. */ private Object readResolve() { return new NeuronString(wrap, featuresList); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy