All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.random.StableRandomGenerator Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.random;

import org.apache.commons.math3.exception.NullArgumentException;
import org.apache.commons.math3.exception.OutOfRangeException;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;

/**
 * 

This class provides a stable normalized random generator. It samples from a stable * distribution with location parameter 0 and scale 1.

* *

The implementation uses the Chambers-Mallows-Stuck method as described in * Handbook of computational statistics: concepts and methods by * James E. Gentle, Wolfgang Härdle, Yuichi Mori.

* * @since 3.0 */ public class StableRandomGenerator implements NormalizedRandomGenerator { /** Underlying generator. */ private final RandomGenerator generator; /** stability parameter */ private final double alpha; /** skewness parameter */ private final double beta; /** cache of expression value used in generation */ private final double zeta; /** * Create a new generator. * * @param generator underlying random generator to use * @param alpha Stability parameter. Must be in range (0, 2] * @param beta Skewness parameter. Must be in range [-1, 1] * @throws NullArgumentException if generator is null * @throws OutOfRangeException if {@code alpha <= 0} or {@code alpha > 2} * or {@code beta < -1} or {@code beta > 1} */ public StableRandomGenerator(final RandomGenerator generator, final double alpha, final double beta) throws NullArgumentException, OutOfRangeException { if (generator == null) { throw new NullArgumentException(); } if (!(alpha > 0d && alpha <= 2d)) { throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_LEFT, alpha, 0, 2); } if (!(beta >= -1d && beta <= 1d)) { throw new OutOfRangeException(LocalizedFormats.OUT_OF_RANGE_SIMPLE, beta, -1, 1); } this.generator = generator; this.alpha = alpha; this.beta = beta; if (alpha < 2d && beta != 0d) { zeta = beta * FastMath.tan(FastMath.PI * alpha / 2); } else { zeta = 0d; } } /** * Generate a random scalar with zero location and unit scale. * * @return a random scalar with zero location and unit scale */ public double nextNormalizedDouble() { // we need 2 uniform random numbers to calculate omega and phi double omega = -FastMath.log(generator.nextDouble()); double phi = FastMath.PI * (generator.nextDouble() - 0.5); // Normal distribution case (Box-Muller algorithm) if (alpha == 2d) { return FastMath.sqrt(2d * omega) * FastMath.sin(phi); } double x; // when beta = 0, zeta is zero as well // Thus we can exclude it from the formula if (beta == 0d) { // Cauchy distribution case if (alpha == 1d) { x = FastMath.tan(phi); } else { x = FastMath.pow(omega * FastMath.cos((1 - alpha) * phi), 1d / alpha - 1d) * FastMath.sin(alpha * phi) / FastMath.pow(FastMath.cos(phi), 1d / alpha); } } else { // Generic stable distribution double cosPhi = FastMath.cos(phi); // to avoid rounding errors around alpha = 1 if (FastMath.abs(alpha - 1d) > 1e-8) { double alphaPhi = alpha * phi; double invAlphaPhi = phi - alphaPhi; x = (FastMath.sin(alphaPhi) + zeta * FastMath.cos(alphaPhi)) / cosPhi * (FastMath.cos(invAlphaPhi) + zeta * FastMath.sin(invAlphaPhi)) / FastMath.pow(omega * cosPhi, (1 - alpha) / alpha); } else { double betaPhi = FastMath.PI / 2 + beta * phi; x = 2d / FastMath.PI * (betaPhi * FastMath.tan(phi) - beta * FastMath.log(FastMath.PI / 2d * omega * cosPhi / betaPhi)); if (alpha != 1d) { x += beta * FastMath.tan(FastMath.PI * alpha / 2); } } } return x; } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy