All Downloads are FREE. Search and download functionalities are using the official Maven repository.

org.apache.commons.math3.stat.regression.MillerUpdatingRegression Maven / Gradle / Ivy

Go to download

The Apache Commons Math project is a library of lightweight, self-contained mathematics and statistics components addressing the most common practical problems not immediately available in the Java programming language or commons-lang.

There is a newer version: 62
Show newest version
/*
 * Licensed to the Apache Software Foundation (ASF) under one or more
 * contributor license agreements.  See the NOTICE file distributed with
 * this work for additional information regarding copyright ownership.
 * The ASF licenses this file to You under the Apache License, Version 2.0
 * (the "License"); you may not use this file except in compliance with
 * the License.  You may obtain a copy of the License at
 *
 *      http://www.apache.org/licenses/LICENSE-2.0
 *
 * Unless required by applicable law or agreed to in writing, software
 * distributed under the License is distributed on an "AS IS" BASIS,
 * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 * See the License for the specific language governing permissions and
 * limitations under the License.
 */
package org.apache.commons.math3.stat.regression;

import java.util.Arrays;
import org.apache.commons.math3.exception.util.LocalizedFormats;
import org.apache.commons.math3.util.FastMath;
import org.apache.commons.math3.util.Precision;
import org.apache.commons.math3.util.MathArrays;

/**
 * This class is a concrete implementation of the {@link UpdatingMultipleLinearRegression} interface.
 *
 * 

The algorithm is described in:

 * Algorithm AS 274: Least Squares Routines to Supplement Those of Gentleman
 * Author(s): Alan J. Miller
 * Source: Journal of the Royal Statistical Society.
 * Series C (Applied Statistics), Vol. 41, No. 2
 * (1992), pp. 458-478
 * Published by: Blackwell Publishing for the Royal Statistical Society
 * Stable URL: http://www.jstor.org/stable/2347583 

* *

This method for multiple regression forms the solution to the OLS problem * by updating the QR decomposition as described by Gentleman.

* * @since 3.0 */ public class MillerUpdatingRegression implements UpdatingMultipleLinearRegression { /** number of variables in regression */ private final int nvars; /** diagonals of cross products matrix */ private final double[] d; /** the elements of the R`Y */ private final double[] rhs; /** the off diagonal portion of the R matrix */ private final double[] r; /** the tolerance for each of the variables */ private final double[] tol; /** residual sum of squares for all nested regressions */ private final double[] rss; /** order of the regressors */ private final int[] vorder; /** scratch space for tolerance calc */ private final double[] work_tolset; /** number of observations entered */ private long nobs = 0; /** sum of squared errors of largest regression */ private double sserr = 0.0; /** has rss been called? */ private boolean rss_set = false; /** has the tolerance setting method been called */ private boolean tol_set = false; /** flags for variables with linear dependency problems */ private final boolean[] lindep; /** singular x values */ private final double[] x_sing; /** workspace for singularity method */ private final double[] work_sing; /** summation of Y variable */ private double sumy = 0.0; /** summation of squared Y values */ private double sumsqy = 0.0; /** boolean flag whether a regression constant is added */ private boolean hasIntercept; /** zero tolerance */ private final double epsilon; /** * Set the default constructor to private access * to prevent inadvertent instantiation */ @SuppressWarnings("unused") private MillerUpdatingRegression() { this(-1, false, Double.NaN); } /** * This is the augmented constructor for the MillerUpdatingRegression class. * * @param numberOfVariables number of regressors to expect, not including constant * @param includeConstant include a constant automatically * @param errorTolerance zero tolerance, how machine zero is determined * @throws ModelSpecificationException if {@code numberOfVariables is less than 1} */ public MillerUpdatingRegression(int numberOfVariables, boolean includeConstant, double errorTolerance) throws ModelSpecificationException { if (numberOfVariables < 1) { throw new ModelSpecificationException(LocalizedFormats.NO_REGRESSORS); } if (includeConstant) { this.nvars = numberOfVariables + 1; } else { this.nvars = numberOfVariables; } this.hasIntercept = includeConstant; this.nobs = 0; this.d = new double[this.nvars]; this.rhs = new double[this.nvars]; this.r = new double[this.nvars * (this.nvars - 1) / 2]; this.tol = new double[this.nvars]; this.rss = new double[this.nvars]; this.vorder = new int[this.nvars]; this.x_sing = new double[this.nvars]; this.work_sing = new double[this.nvars]; this.work_tolset = new double[this.nvars]; this.lindep = new boolean[this.nvars]; for (int i = 0; i < this.nvars; i++) { vorder[i] = i; } if (errorTolerance > 0) { this.epsilon = errorTolerance; } else { this.epsilon = -errorTolerance; } } /** * Primary constructor for the MillerUpdatingRegression. * * @param numberOfVariables maximum number of potential regressors * @param includeConstant include a constant automatically * @throws ModelSpecificationException if {@code numberOfVariables is less than 1} */ public MillerUpdatingRegression(int numberOfVariables, boolean includeConstant) throws ModelSpecificationException { this(numberOfVariables, includeConstant, Precision.EPSILON); } /** * A getter method which determines whether a constant is included. * @return true regression has an intercept, false no intercept */ public boolean hasIntercept() { return this.hasIntercept; } /** * Gets the number of observations added to the regression model. * @return number of observations */ public long getN() { return this.nobs; } /** * Adds an observation to the regression model. * @param x the array with regressor values * @param y the value of dependent variable given these regressors * @exception ModelSpecificationException if the length of {@code x} does not equal * the number of independent variables in the model */ public void addObservation(final double[] x, final double y) throws ModelSpecificationException { if ((!this.hasIntercept && x.length != nvars) || (this.hasIntercept && x.length + 1 != nvars)) { throw new ModelSpecificationException(LocalizedFormats.INVALID_REGRESSION_OBSERVATION, x.length, nvars); } if (!this.hasIntercept) { include(MathArrays.copyOf(x, x.length), 1.0, y); } else { final double[] tmp = new double[x.length + 1]; System.arraycopy(x, 0, tmp, 1, x.length); tmp[0] = 1.0; include(tmp, 1.0, y); } ++nobs; } /** * Adds multiple observations to the model. * @param x observations on the regressors * @param y observations on the regressand * @throws ModelSpecificationException if {@code x} is not rectangular, does not match * the length of {@code y} or does not contain sufficient data to estimate the model */ public void addObservations(double[][] x, double[] y) throws ModelSpecificationException { if ((x == null) || (y == null) || (x.length != y.length)) { throw new ModelSpecificationException( LocalizedFormats.DIMENSIONS_MISMATCH_SIMPLE, (x == null) ? 0 : x.length, (y == null) ? 0 : y.length); } if (x.length == 0) { // Must be no y data either throw new ModelSpecificationException( LocalizedFormats.NO_DATA); } if (x[0].length + 1 > x.length) { throw new ModelSpecificationException( LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS, x.length, x[0].length); } for (int i = 0; i < x.length; i++) { addObservation(x[i], y[i]); } } /** * The include method is where the QR decomposition occurs. This statement forms all * intermediate data which will be used for all derivative measures. * According to the miller paper, note that in the original implementation the x vector * is overwritten. In this implementation, the include method is passed a copy of the * original data vector so that there is no contamination of the data. Additionally, * this method differs slightly from Gentleman's method, in that the assumption is * of dense design matrices, there is some advantage in using the original gentleman algorithm * on sparse matrices. * * @param x observations on the regressors * @param wi weight of the this observation (-1,1) * @param yi observation on the regressand */ private void include(final double[] x, final double wi, final double yi) { int nextr = 0; double w = wi; double y = yi; double xi; double di; double wxi; double dpi; double xk; double _w; this.rss_set = false; sumy = smartAdd(yi, sumy); sumsqy = smartAdd(sumsqy, yi * yi); for (int i = 0; i < x.length; i++) { if (w == 0.0) { return; } xi = x[i]; if (xi == 0.0) { nextr += nvars - i - 1; continue; } di = d[i]; wxi = w * xi; _w = w; if (di != 0.0) { dpi = smartAdd(di, wxi * xi); final double tmp = wxi * xi / di; if (FastMath.abs(tmp) > Precision.EPSILON) { w = (di * w) / dpi; } } else { dpi = wxi * xi; w = 0.0; } d[i] = dpi; for (int k = i + 1; k < nvars; k++) { xk = x[k]; x[k] = smartAdd(xk, -xi * r[nextr]); if (di != 0.0) { r[nextr] = smartAdd(di * r[nextr], (_w * xi) * xk) / dpi; } else { r[nextr] = xk / xi; } ++nextr; } xk = y; y = smartAdd(xk, -xi * rhs[i]); if (di != 0.0) { rhs[i] = smartAdd(di * rhs[i], wxi * xk) / dpi; } else { rhs[i] = xk / xi; } } sserr = smartAdd(sserr, w * y * y); } /** * Adds to number a and b such that the contamination due to * numerical smallness of one addend does not corrupt the sum. * @param a - an addend * @param b - an addend * @return the sum of the a and b */ private double smartAdd(double a, double b) { final double _a = FastMath.abs(a); final double _b = FastMath.abs(b); if (_a > _b) { final double eps = _a * Precision.EPSILON; if (_b > eps) { return a + b; } return a; } else { final double eps = _b * Precision.EPSILON; if (_a > eps) { return a + b; } return b; } } /** * As the name suggests, clear wipes the internals and reorders everything in the * canonical order. */ public void clear() { Arrays.fill(this.d, 0.0); Arrays.fill(this.rhs, 0.0); Arrays.fill(this.r, 0.0); Arrays.fill(this.tol, 0.0); Arrays.fill(this.rss, 0.0); Arrays.fill(this.work_tolset, 0.0); Arrays.fill(this.work_sing, 0.0); Arrays.fill(this.x_sing, 0.0); Arrays.fill(this.lindep, false); for (int i = 0; i < nvars; i++) { this.vorder[i] = i; } this.nobs = 0; this.sserr = 0.0; this.sumy = 0.0; this.sumsqy = 0.0; this.rss_set = false; this.tol_set = false; } /** * This sets up tolerances for singularity testing. */ private void tolset() { int pos; double total; final double eps = this.epsilon; for (int i = 0; i < nvars; i++) { this.work_tolset[i] = FastMath.sqrt(d[i]); } tol[0] = eps * this.work_tolset[0]; for (int col = 1; col < nvars; col++) { pos = col - 1; total = work_tolset[col]; for (int row = 0; row < col; row++) { total += FastMath.abs(r[pos]) * work_tolset[row]; pos += nvars - row - 2; } tol[col] = eps * total; } tol_set = true; } /** * The regcf method conducts the linear regression and extracts the * parameter vector. Notice that the algorithm can do subset regression * with no alteration. * * @param nreq how many of the regressors to include (either in canonical * order, or in the current reordered state) * @return an array with the estimated slope coefficients * @throws ModelSpecificationException if {@code nreq} is less than 1 * or greater than the number of independent variables */ private double[] regcf(int nreq) throws ModelSpecificationException { int nextr; if (nreq < 1) { throw new ModelSpecificationException(LocalizedFormats.NO_REGRESSORS); } if (nreq > this.nvars) { throw new ModelSpecificationException( LocalizedFormats.TOO_MANY_REGRESSORS, nreq, this.nvars); } if (!this.tol_set) { tolset(); } final double[] ret = new double[nreq]; boolean rankProblem = false; for (int i = nreq - 1; i > -1; i--) { if (FastMath.sqrt(d[i]) < tol[i]) { ret[i] = 0.0; d[i] = 0.0; rankProblem = true; } else { ret[i] = rhs[i]; nextr = i * (nvars + nvars - i - 1) / 2; for (int j = i + 1; j < nreq; j++) { ret[i] = smartAdd(ret[i], -r[nextr] * ret[j]); ++nextr; } } } if (rankProblem) { for (int i = 0; i < nreq; i++) { if (this.lindep[i]) { ret[i] = Double.NaN; } } } return ret; } /** * The method which checks for singularities and then eliminates the offending * columns. */ private void singcheck() { int pos; for (int i = 0; i < nvars; i++) { work_sing[i] = FastMath.sqrt(d[i]); } for (int col = 0; col < nvars; col++) { // Set elements within R to zero if they are less than tol(col) in // absolute value after being scaled by the square root of their row // multiplier final double temp = tol[col]; pos = col - 1; for (int row = 0; row < col - 1; row++) { if (FastMath.abs(r[pos]) * work_sing[row] < temp) { r[pos] = 0.0; } pos += nvars - row - 2; } // If diagonal element is near zero, set it to zero, set appropriate // element of LINDEP, and use INCLUD to augment the projections in // the lower rows of the orthogonalization. lindep[col] = false; if (work_sing[col] < temp) { lindep[col] = true; if (col < nvars - 1) { Arrays.fill(x_sing, 0.0); int _pi = col * (nvars + nvars - col - 1) / 2; for (int _xi = col + 1; _xi < nvars; _xi++, _pi++) { x_sing[_xi] = r[_pi]; r[_pi] = 0.0; } final double y = rhs[col]; final double weight = d[col]; d[col] = 0.0; rhs[col] = 0.0; this.include(x_sing, weight, y); } else { sserr += d[col] * rhs[col] * rhs[col]; } } } } /** * Calculates the sum of squared errors for the full regression * and all subsets in the following manner:
     * rss[] ={
     * ResidualSumOfSquares_allNvars,
     * ResidualSumOfSquares_FirstNvars-1,
     * ResidualSumOfSquares_FirstNvars-2,
     * ..., ResidualSumOfSquares_FirstVariable} 
*/ private void ss() { double total = sserr; rss[nvars - 1] = sserr; for (int i = nvars - 1; i > 0; i--) { total += d[i] * rhs[i] * rhs[i]; rss[i - 1] = total; } rss_set = true; } /** * Calculates the cov matrix assuming only the first nreq variables are * included in the calculation. The returned array contains a symmetric * matrix stored in lower triangular form. The matrix will have * ( nreq + 1 ) * nreq / 2 elements. For illustration
     * cov =
     * {
     *  cov_00,
     *  cov_10, cov_11,
     *  cov_20, cov_21, cov22,
     *  ...
     * } 
* * @param nreq how many of the regressors to include (either in canonical * order, or in the current reordered state) * @return an array with the variance covariance of the included * regressors in lower triangular form */ private double[] cov(int nreq) { if (this.nobs <= nreq) { return null; } double rnk = 0.0; for (int i = 0; i < nreq; i++) { if (!this.lindep[i]) { rnk += 1.0; } } final double var = rss[nreq - 1] / (nobs - rnk); final double[] rinv = new double[nreq * (nreq - 1) / 2]; inverse(rinv, nreq); final double[] covmat = new double[nreq * (nreq + 1) / 2]; Arrays.fill(covmat, Double.NaN); int pos2; int pos1; int start = 0; double total = 0; for (int row = 0; row < nreq; row++) { pos2 = start; if (!this.lindep[row]) { for (int col = row; col < nreq; col++) { if (!this.lindep[col]) { pos1 = start + col - row; if (row == col) { total = 1.0 / d[col]; } else { total = rinv[pos1 - 1] / d[col]; } for (int k = col + 1; k < nreq; k++) { if (!this.lindep[k]) { total += rinv[pos1] * rinv[pos2] / d[k]; } ++pos1; ++pos2; } covmat[ (col + 1) * col / 2 + row] = total * var; } else { pos2 += nreq - col - 1; } } } start += nreq - row - 1; } return covmat; } /** * This internal method calculates the inverse of the upper-triangular portion * of the R matrix. * @param rinv the storage for the inverse of r * @param nreq how many of the regressors to include (either in canonical * order, or in the current reordered state) */ private void inverse(double[] rinv, int nreq) { int pos = nreq * (nreq - 1) / 2 - 1; int pos1 = -1; int pos2 = -1; double total = 0.0; Arrays.fill(rinv, Double.NaN); for (int row = nreq - 1; row > 0; --row) { if (!this.lindep[row]) { final int start = (row - 1) * (nvars + nvars - row) / 2; for (int col = nreq; col > row; --col) { pos1 = start; pos2 = pos; total = 0.0; for (int k = row; k < col - 1; k++) { pos2 += nreq - k - 1; if (!this.lindep[k]) { total += -r[pos1] * rinv[pos2]; } ++pos1; } rinv[pos] = total - r[pos1]; --pos; } } else { pos -= nreq - row; } } } /** * In the original algorithm only the partial correlations of the regressors * is returned to the user. In this implementation, we have
     * corr =
     * {
     *   corrxx - lower triangular
     *   corrxy - bottom row of the matrix
     * }
     * Replaces subroutines PCORR and COR of:
     * ALGORITHM AS274  APPL. STATIST. (1992) VOL.41, NO. 2 
* *

Calculate partial correlations after the variables in rows * 1, 2, ..., IN have been forced into the regression. * If IN = 1, and the first row of R represents a constant in the * model, then the usual simple correlations are returned.

* *

If IN = 0, the value returned in array CORMAT for the correlation * of variables Xi & Xj is:

     * sum ( Xi.Xj ) / Sqrt ( sum (Xi^2) . sum (Xj^2) )

* *

On return, array CORMAT contains the upper triangle of the matrix of * partial correlations stored by rows, excluding the 1's on the diagonal. * e.g. if IN = 2, the consecutive elements returned are: * (3,4) (3,5) ... (3,ncol), (4,5) (4,6) ... (4,ncol), etc. * Array YCORR stores the partial correlations with the Y-variable * starting with YCORR(IN+1) = partial correlation with the variable in * position (IN+1).

* * @param in how many of the regressors to include (either in canonical * order, or in the current reordered state) * @return an array with the partial correlations of the remainder of * regressors with each other and the regressand, in lower triangular form */ public double[] getPartialCorrelations(int in) { final double[] output = new double[(nvars - in + 1) * (nvars - in) / 2]; int pos; int pos1; int pos2; final int rms_off = -in; final int wrk_off = -(in + 1); final double[] rms = new double[nvars - in]; final double[] work = new double[nvars - in - 1]; double sumxx; double sumxy; double sumyy; final int offXX = (nvars - in) * (nvars - in - 1) / 2; if (in < -1 || in >= nvars) { return null; } final int nvm = nvars - 1; final int base_pos = r.length - (nvm - in) * (nvm - in + 1) / 2; if (d[in] > 0.0) { rms[in + rms_off] = 1.0 / FastMath.sqrt(d[in]); } for (int col = in + 1; col < nvars; col++) { pos = base_pos + col - 1 - in; sumxx = d[col]; for (int row = in; row < col; row++) { sumxx += d[row] * r[pos] * r[pos]; pos += nvars - row - 2; } if (sumxx > 0.0) { rms[col + rms_off] = 1.0 / FastMath.sqrt(sumxx); } else { rms[col + rms_off] = 0.0; } } sumyy = sserr; for (int row = in; row < nvars; row++) { sumyy += d[row] * rhs[row] * rhs[row]; } if (sumyy > 0.0) { sumyy = 1.0 / FastMath.sqrt(sumyy); } pos = 0; for (int col1 = in; col1 < nvars; col1++) { sumxy = 0.0; Arrays.fill(work, 0.0); pos1 = base_pos + col1 - in - 1; for (int row = in; row < col1; row++) { pos2 = pos1 + 1; for (int col2 = col1 + 1; col2 < nvars; col2++) { work[col2 + wrk_off] += d[row] * r[pos1] * r[pos2]; pos2++; } sumxy += d[row] * r[pos1] * rhs[row]; pos1 += nvars - row - 2; } pos2 = pos1 + 1; for (int col2 = col1 + 1; col2 < nvars; col2++) { work[col2 + wrk_off] += d[col1] * r[pos2]; ++pos2; output[ (col2 - 1 - in) * (col2 - in) / 2 + col1 - in] = work[col2 + wrk_off] * rms[col1 + rms_off] * rms[col2 + rms_off]; ++pos; } sumxy += d[col1] * rhs[col1]; output[col1 + rms_off + offXX] = sumxy * rms[col1 + rms_off] * sumyy; } return output; } /** * ALGORITHM AS274 APPL. STATIST. (1992) VOL.41, NO. 2. * Move variable from position FROM to position TO in an * orthogonal reduction produced by AS75.1. * * @param from initial position * @param to destination */ private void vmove(int from, int to) { double d1; double d2; double X; double d1new; double d2new; double cbar; double sbar; double Y; int first; int inc; int m1; int m2; int mp1; int pos; boolean bSkipTo40 = false; if (from == to) { return; } if (!this.rss_set) { ss(); } int count = 0; if (from < to) { first = from; inc = 1; count = to - from; } else { first = from - 1; inc = -1; count = from - to; } int m = first; int idx = 0; while (idx < count) { m1 = m * (nvars + nvars - m - 1) / 2; m2 = m1 + nvars - m - 1; mp1 = m + 1; d1 = d[m]; d2 = d[mp1]; // Special cases. if (d1 > this.epsilon || d2 > this.epsilon) { X = r[m1]; if (FastMath.abs(X) * FastMath.sqrt(d1) < tol[mp1]) { X = 0.0; } if (d1 < this.epsilon || FastMath.abs(X) < this.epsilon) { d[m] = d2; d[mp1] = d1; r[m1] = 0.0; for (int col = m + 2; col < nvars; col++) { ++m1; X = r[m1]; r[m1] = r[m2]; r[m2] = X; ++m2; } X = rhs[m]; rhs[m] = rhs[mp1]; rhs[mp1] = X; bSkipTo40 = true; //break; } else if (d2 < this.epsilon) { d[m] = d1 * X * X; r[m1] = 1.0 / X; for (int _i = m1 + 1; _i < m1 + nvars - m - 1; _i++) { r[_i] /= X; } rhs[m] /= X; bSkipTo40 = true; //break; } if (!bSkipTo40) { d1new = d2 + d1 * X * X; cbar = d2 / d1new; sbar = X * d1 / d1new; d2new = d1 * cbar; d[m] = d1new; d[mp1] = d2new; r[m1] = sbar; for (int col = m + 2; col < nvars; col++) { ++m1; Y = r[m1]; r[m1] = cbar * r[m2] + sbar * Y; r[m2] = Y - X * r[m2]; ++m2; } Y = rhs[m]; rhs[m] = cbar * rhs[mp1] + sbar * Y; rhs[mp1] = Y - X * rhs[mp1]; } } if (m > 0) { pos = m; for (int row = 0; row < m; row++) { X = r[pos]; r[pos] = r[pos - 1]; r[pos - 1] = X; pos += nvars - row - 2; } } // Adjust variable order (VORDER), the tolerances (TOL) and // the vector of residual sums of squares (RSS). m1 = vorder[m]; vorder[m] = vorder[mp1]; vorder[mp1] = m1; X = tol[m]; tol[m] = tol[mp1]; tol[mp1] = X; rss[m] = rss[mp1] + d[mp1] * rhs[mp1] * rhs[mp1]; m += inc; ++idx; } } /** * ALGORITHM AS274 APPL. STATIST. (1992) VOL.41, NO. 2 * *

Re-order the variables in an orthogonal reduction produced by * AS75.1 so that the N variables in LIST start at position POS1, * though will not necessarily be in the same order as in LIST. * Any variables in VORDER before position POS1 are not moved. * Auxiliary routine called: VMOVE.

* *

This internal method reorders the regressors.

* * @param list the regressors to move * @param pos1 where the list will be placed * @return -1 error, 0 everything ok */ private int reorderRegressors(int[] list, int pos1) { int next; int i; int l; if (list.length < 1 || list.length > nvars + 1 - pos1) { return -1; } next = pos1; i = pos1; while (i < nvars) { l = vorder[i]; for (int j = 0; j < list.length; j++) { if (l == list[j] && i > next) { this.vmove(i, next); ++next; if (next >= list.length + pos1) { return 0; } else { break; } } } ++i; } return 0; } /** * Gets the diagonal of the Hat matrix also known as the leverage matrix. * * @param row_data returns the diagonal of the hat matrix for this observation * @return the diagonal element of the hatmatrix */ public double getDiagonalOfHatMatrix(double[] row_data) { double[] wk = new double[this.nvars]; int pos; double total; if (row_data.length > nvars) { return Double.NaN; } double[] xrow; if (this.hasIntercept) { xrow = new double[row_data.length + 1]; xrow[0] = 1.0; System.arraycopy(row_data, 0, xrow, 1, row_data.length); } else { xrow = row_data; } double hii = 0.0; for (int col = 0; col < xrow.length; col++) { if (FastMath.sqrt(d[col]) < tol[col]) { wk[col] = 0.0; } else { pos = col - 1; total = xrow[col]; for (int row = 0; row < col; row++) { total = smartAdd(total, -wk[row] * r[pos]); pos += nvars - row - 2; } wk[col] = total; hii = smartAdd(hii, (total * total) / d[col]); } } return hii; } /** * Gets the order of the regressors, useful if some type of reordering * has been called. Calling regress with int[]{} args will trigger * a reordering. * * @return int[] with the current order of the regressors */ public int[] getOrderOfRegressors(){ return MathArrays.copyOf(vorder); } /** * Conducts a regression on the data in the model, using all regressors. * * @return RegressionResults the structure holding all regression results * @exception ModelSpecificationException - thrown if number of observations is * less than the number of variables */ public RegressionResults regress() throws ModelSpecificationException { return regress(this.nvars); } /** * Conducts a regression on the data in the model, using a subset of regressors. * * @param numberOfRegressors many of the regressors to include (either in canonical * order, or in the current reordered state) * @return RegressionResults the structure holding all regression results * @exception ModelSpecificationException - thrown if number of observations is * less than the number of variables or number of regressors requested * is greater than the regressors in the model */ public RegressionResults regress(int numberOfRegressors) throws ModelSpecificationException { if (this.nobs <= numberOfRegressors) { throw new ModelSpecificationException( LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS, this.nobs, numberOfRegressors); } if( numberOfRegressors > this.nvars ){ throw new ModelSpecificationException( LocalizedFormats.TOO_MANY_REGRESSORS, numberOfRegressors, this.nvars); } tolset(); singcheck(); double[] beta = this.regcf(numberOfRegressors); ss(); double[] cov = this.cov(numberOfRegressors); int rnk = 0; for (int i = 0; i < this.lindep.length; i++) { if (!this.lindep[i]) { ++rnk; } } boolean needsReorder = false; for (int i = 0; i < numberOfRegressors; i++) { if (this.vorder[i] != i) { needsReorder = true; break; } } if (!needsReorder) { return new RegressionResults( beta, new double[][]{cov}, true, this.nobs, rnk, this.sumy, this.sumsqy, this.sserr, this.hasIntercept, false); } else { double[] betaNew = new double[beta.length]; double[] covNew = new double[cov.length]; int[] newIndices = new int[beta.length]; for (int i = 0; i < nvars; i++) { for (int j = 0; j < numberOfRegressors; j++) { if (this.vorder[j] == i) { betaNew[i] = beta[ j]; newIndices[i] = j; } } } int idx1 = 0; int idx2; int _i; int _j; for (int i = 0; i < beta.length; i++) { _i = newIndices[i]; for (int j = 0; j <= i; j++, idx1++) { _j = newIndices[j]; if (_i > _j) { idx2 = _i * (_i + 1) / 2 + _j; } else { idx2 = _j * (_j + 1) / 2 + _i; } covNew[idx1] = cov[idx2]; } } return new RegressionResults( betaNew, new double[][]{covNew}, true, this.nobs, rnk, this.sumy, this.sumsqy, this.sserr, this.hasIntercept, false); } } /** * Conducts a regression on the data in the model, using regressors in array * Calling this method will change the internal order of the regressors * and care is required in interpreting the hatmatrix. * * @param variablesToInclude array of variables to include in regression * @return RegressionResults the structure holding all regression results * @exception ModelSpecificationException - thrown if number of observations is * less than the number of variables, the number of regressors requested * is greater than the regressors in the model or a regressor index in * regressor array does not exist */ public RegressionResults regress(int[] variablesToInclude) throws ModelSpecificationException { if (variablesToInclude.length > this.nvars) { throw new ModelSpecificationException( LocalizedFormats.TOO_MANY_REGRESSORS, variablesToInclude.length, this.nvars); } if (this.nobs <= this.nvars) { throw new ModelSpecificationException( LocalizedFormats.NOT_ENOUGH_DATA_FOR_NUMBER_OF_PREDICTORS, this.nobs, this.nvars); } Arrays.sort(variablesToInclude); int iExclude = 0; for (int i = 0; i < variablesToInclude.length; i++) { if (i >= this.nvars) { throw new ModelSpecificationException( LocalizedFormats.INDEX_LARGER_THAN_MAX, i, this.nvars); } if (i > 0 && variablesToInclude[i] == variablesToInclude[i - 1]) { variablesToInclude[i] = -1; ++iExclude; } } int[] series; if (iExclude > 0) { int j = 0; series = new int[variablesToInclude.length - iExclude]; for (int i = 0; i < variablesToInclude.length; i++) { if (variablesToInclude[i] > -1) { series[j] = variablesToInclude[i]; ++j; } } } else { series = variablesToInclude; } reorderRegressors(series, 0); tolset(); singcheck(); double[] beta = this.regcf(series.length); ss(); double[] cov = this.cov(series.length); int rnk = 0; for (int i = 0; i < this.lindep.length; i++) { if (!this.lindep[i]) { ++rnk; } } boolean needsReorder = false; for (int i = 0; i < this.nvars; i++) { if (this.vorder[i] != series[i]) { needsReorder = true; break; } } if (!needsReorder) { return new RegressionResults( beta, new double[][]{cov}, true, this.nobs, rnk, this.sumy, this.sumsqy, this.sserr, this.hasIntercept, false); } else { double[] betaNew = new double[beta.length]; int[] newIndices = new int[beta.length]; for (int i = 0; i < series.length; i++) { for (int j = 0; j < this.vorder.length; j++) { if (this.vorder[j] == series[i]) { betaNew[i] = beta[ j]; newIndices[i] = j; } } } double[] covNew = new double[cov.length]; int idx1 = 0; int idx2; int _i; int _j; for (int i = 0; i < beta.length; i++) { _i = newIndices[i]; for (int j = 0; j <= i; j++, idx1++) { _j = newIndices[j]; if (_i > _j) { idx2 = _i * (_i + 1) / 2 + _j; } else { idx2 = _j * (_j + 1) / 2 + _i; } covNew[idx1] = cov[idx2]; } } return new RegressionResults( betaNew, new double[][]{covNew}, true, this.nobs, rnk, this.sumy, this.sumsqy, this.sserr, this.hasIntercept, false); } } }




© 2015 - 2024 Weber Informatics LLC | Privacy Policy